8 research outputs found

    Analysis and synthesis of solutions for the agglomeration process modeling

    No full text
    The present work is devoted development of model of agglomerating process for propellants based on ammonium perchlorate (AP), ammonium dinitramide (ADN), HMX, inactive binder, and nanoaluminum. Generalization of experimental data, development of physical picture of agglomeration for listed propellants, development and analysis of mathematical models are carried out. Synthesis of models of various phenomena taking place at agglomeration implementation allows predicting of size and quantity, chemical composition, structure of forming agglomerates and its fraction in set of condensed combustion products. It became possible in many respects due to development of new model of agglomerating particle evolution on the surface of burning propellant. Obtained results correspond to available experimental data. It is supposed that analogical method based on analysis of mathematical models of particular phenomena and their synthesis will allow implementing of the agglomerating process modeling for other types of metalized solid propellants

    Nanoaluminum as a Solid Propellant Fuel

    No full text
    Experimental studies on the burning of nanoaluminum-based solid rocket propellants are carried out. Data on the properties of condensed combustion products, mechanisms of their formation, and burning-rate law are obtained. Based on these data, a physical picture is developed of the considered burning-propellant classes. Mathematical modeling of burning nanoaluminum in composite solid rocket propellants is carried out. The influence of nanoaluminum on ignition temperature of the metal fuel and burning-rate law is shown. The results of this study allow carrying out the analysis and selection of good-quality propellants using nanoaluminum

    Condensed combustion products from burning of nanoaluminum-based propellants: properties and formation mechanism

    No full text
    The experimental results obtained within a joint international research effort regarding the formation of condensed combustion products from nanoaluminum-based solid propellants (SPs) are reported. Data on the size, structure, chemical composition, and quantity of condensed combustion products (CCPs) as well as conditions of their formation are discussed. On the basis of the collected experimental data, a general physical picture of condensed combustion products formation is portrayed. The results of this study allow carrying out the analysis of good quality propellants using nanoaluminum
    corecore