2,471 research outputs found

    Phase Coexistence Near a Morphotropic Phase Boundary in Sm-doped BiFeO3 Films

    Get PDF
    We have investigated heteroepitaxial films of Sm-doped BiFeO3 with a Sm-concentration near a morphotropic phase boundary. Our high-resolution synchrotron X-ray diffraction, carried out in a temperature range of 25C to 700C, reveals substantial phase coexistence as one changes temperature to crossover from a low-temperature PbZrO3-like phase to a high-temperature orthorhombic phase. We also examine changes due to strain for films greater or less than the critical thickness for misfit dislocation formation. Particularly, we note that thicker films exhibit a substantial volume collapse associated with the structural transition that is suppressed in strained thin films

    Bulk Fermion Stars with New Dimensions

    Get PDF
    Many efforts have been devoted to the studies of the phenomenology in particle physics with extra dimensions. We propose degenerate fermion stars with extra dimensions and study what features characterized by the size of extra dimensions should appear in its structure. We find that Kaluza-Klein excited modes arise for the larger scale of extra dimensions and examine the conditions on which different layers should be caused in the inside of the stars. We expound how the extra dimensions affect on physical quantities.Comment: 20 pages, 14 figure

    Genetic screening of 202 individuals with congenital limb malformations and requiring reconstructive surgery

    Get PDF
    BACKGROUND: Congenital limb malformations (CLMs) are common and present to a variety of specialties, notably plastic and orthopaedic surgeons, and clinical geneticists. The authors aimed to characterise causative mutations in an unselected cohort of patients with CLMs requiring reconstructive surgery. METHODS: 202 patients presenting with CLM were recruited. The authors obtained G-banded karyotypes and screened EN1, GLI3, HAND2, HOXD13, ROR2, SALL1, SALL4, ZRS of SHH, SPRY4, TBX5, TWIST1 and WNT7A for point mutations using denaturing high performance liquid chromatography (DHPLC) and direct sequencing. Multiplex ligation dependent probe amplification (MLPA) kits were developed and used to measure copy number in GLI3, HOXD13, ROR2, SALL1, SALL4, TBX5 and the ZRS of SHH. RESULTS: Within the cohort, causative genetic alterations were identified in 23 patients (11%): mutations in GLI3 (n = 5), HOXD13 (n = 5), the ZRS of SHH (n = 4), and chromosome abnormalities (n = 4) were the most common lesions found. Clinical features that predicted the discovery of a genetic cause included a bilateral malformation, positive family history, and having increasing numbers of limbs affected (all p<0.01). Additionally, specific patterns of malformation predicted mutations in specific genes. CONCLUSIONS: Based on higher mutation prevalence the authors propose that GLI3, HOXD13 and the ZRS of SHH should be prioritised for introduction into molecular genetic testing programmes for CLM. The authors have developed simple criteria that can refine the selection of patients by surgeons for referral to clinical geneticists. The cohort also represents an excellent resource to test for mutations in novel candidate genes

    Key Parameters Requirements for Non‐Fullerene‐Based Organic Solar Cells with Power Conversion Efficiency >20%

    Get PDF
    The reported power conversion efficiencies (PCEs) of nonfullerene acceptor (NFA) based organic photovoltaics (OPVs) now exceed 14% and 17% for single‐junction and two‐terminal tandem cells, respectively. However, increasing the PCE further requires an improved understanding of the factors limiting the device efficiency. Here, the efficiency limits of single‐junction and two‐terminal tandem NFA‐based OPV cells are examined with the aid of a numerical device simulator that takes into account the optical properties of the active material(s), charge recombination effects, and the hole and electron mobilities in the active layer of the device. The simulations reveal that single‐junction NFA OPVs can potentially reach PCE values in excess of 18% with mobility values readily achievable in existing material systems. Furthermore, it is found that balanced electron and hole mobilities of >10−3 cm2 V−1 s−1 in combination with low nongeminate recombination rate constants of 10−12 cm3 s−1 could lead to PCE values in excess of 20% and 25% for single‐junction and two‐terminal tandem OPV cells, respectively. This analysis provides the first tangible description of the practical performance targets and useful design rules for single‐junction and tandem OPVs based on NFA materials, emphasizing the need for developing new material systems that combine these desired characteristics
    corecore