13 research outputs found

    Langmuir probe diagnostic studies of pulsed hydrogen plasmas in planar microwave reactors

    Full text link
    Langmuir probe techniques have been used to study time and spatially resolved electron densities and electron temperatures in pulse-modulated hydrogen discharges in two different planar microwave reactors (fmicrowave= 2.45 GHz, tpulse= 1 ms). The reactors are (i) a standing-wave radiative slotted waveguide reactor and (ii) a modified travelling-wave radiative slotted waveguide reactor, which generate relatively large plasmas over areas from about 350 cm^2 to 500 cm^2. The plasma properties of these reactor types are of particular interest as they have been used for basic research and for plasma processing, e.g. for surface treatment and layer deposition. In the present study the pressures and microwave powers in the reactors were varied between 33 and 55 Pa and 600 and 3600 W, respectively. In regions with high electromagnetic fields shielded Langmuir probes were used to avoid disturbances of the probe characteristic. Close to the microwave windows of the reactors both the electron density and the electron temperature showed strong inhomogeneities. In the standing-wave reactor the inhomogeneity was found to be spatially modulated by the position of the slots. The maximum value of the electron temperature was about 10 eV and the electron density varied between 0.2 and 14*10^11 cm^-3. The steady state electron temperature in a discharge pulse was reached within a few tens of microseconds whereas the electron density needed some hundreds of microseconds to reach a steady state. Depending on the reactor the electron density reached a maximum between 80 and 200 microseconds after the beginning of the pulse.Comment: 16 pages including 18 figures. The following article has been accepted by J. Appl. Phys. After it is published, it will be found at http://link.aip.or
    corecore