2,013 research outputs found

    Decoherence of quantum wavepackets due to interaction with conformal spacetime fluctuations

    Get PDF
    One of the biggest problems faced by those attempting to combine quantum theory and general relativity is the experimental inaccessibility of the unification scale. In this paper we show how incoherent conformal waves in the gravitational field, which may be produced by quantum mechanical zero-point fluctuations, interact with the wavepackets of massive particles. The result of this interaction is to produce decoherence within the wavepackets which could be accessible in experiments at the atomic scale. Using a simple model for the coherence properties of the gravitational field we derive an equation for the evolution of the density matrix of such a wavepacket. Following the primary state diffusion programme, the most promising source of spacetime fluctuations for detection are the above zero-point energy fluctuations. According to our model, the absence of intrinsic irremoveable decoherence in matter interferometry experiments puts bounds on some of the parameters of quantum gravity theories. Current experiments give \lambda > 18. , where \lambda t_{Planck} is an effective cut-off for the validity of low-energy quantum gravity theories.Comment: REVTeX forma

    Quantum state diffusion with a moving basis: computing quantum-optical spectra

    Full text link
    Quantum state diffusion (QSD) as a tool to solve quantum-optical master equations by stochastic simulation can be made several orders of magnitude more efficient if states in Hilbert space are represented in a moving basis of excited coherent states. The large savings in computer memory and time are due to the localization property of the QSD equation. We show how the method can be used to compute spectra and give an application to second harmonic generation.Comment: 8 pages in RevTeX, 1 uuencoded postscript figure, submitted to Phys. Rev.

    Quantum state diffusion, localization and computation

    Full text link
    Numerical simulation of individual open quantum systems has proven advantages over density operator computations. Quantum state diffusion with a moving basis (MQSD) provides a practical numerical simulation method which takes full advantage of the localization of quantum states into wave packets occupying small regions of classical phase space. Following and extending the original proposal of Percival, Alber and Steimle, we show that MQSD can provide a further gain over ordinary QSD and other quantum trajectory methods of many orders of magnitude in computational space and time. Because of these gains, it is even possible to calculate an open quantum system trajectory when the corresponding isolated system is intractable. MQSD is particularly advantageous where classical or semiclassical dynamics provides an adequate qualitative picture but is numerically inaccurate because of significant quantum effects. The principles are illustrated by computations for the quantum Duffing oscillator and for second harmonic generation in quantum optics. Potential applications in atomic and molecular dynamics, quantum circuits and quantum computation are suggested.Comment: 16 pages in LaTeX, 2 uuencoded postscript figures, submitted to J. Phys.

    From Heisenberg matrix mechanics to EBK quantization: theory and first applications

    Full text link
    Despite the seminal connection between classical multiply-periodic motion and Heisenberg matrix mechanics and the massive amount of work done on the associated problem of semiclassical (EBK) quantization of bound states, we show that there are, nevertheless, a number of previously unexploited aspects of this relationship that bear on the quantum-classical correspondence. In particular, we emphasize a quantum variational principle that implies the classical variational principle for invariant tori. We also expose the more indirect connection between commutation relations and quantization of action variables. With the help of several standard models with one or two degrees of freedom, we then illustrate how the methods of Heisenberg matrix mechanics described in this paper may be used to obtain quantum solutions with a modest increase in effort compared to semiclassical calculations. We also describe and apply a method for obtaining leading quantum corrections to EBK results. Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.

    Non-monotonicity in the quantum-classical transition: Chaos induced by quantum effects

    Get PDF
    The transition from classical to quantum behavior for chaotic systems is understood to be accompanied by the suppression of chaotic effects as the relative size of \hbar is increased. We show evidence to the contrary in the behavior of the quantum trajectory dynamics of a dissipative quantum chaotic system, the double-well Duffing oscillator. The classical limit in the case considered has regular behavior, but as the effective \hbar is increased we see chaotic behavior. This chaos then disappears deeper into the quantum regime, which means that the quantum-classical transition in this case is non-monotonic in \hbar.Comment: 4 pages; presentation modified significantly to demonstrate that quantum effects are indeed responsible for the `anomalous' chaos. 2 figures adde

    Ultimate decoherence border for matter-wave interferometry

    Full text link
    Stochastic backgrounds of gravitational waves are intrinsic fluctuations of spacetime which lead to an unavoidable decoherence mechanism. This mechanism manifests itself as a degradation of the contrast of quantum interferences. It defines an ultimate decoherence border for matter-wave interferometry using larger and larger molecules. We give a quantitative characterization of this border in terms of figures involving the gravitational environment as well as the sensitivity of the interferometer to gravitational waves. The known level of gravitational noise determines the maximal size of the molecular probe for which interferences may remain observable. We discuss the relevance of this result in the context of ongoing progresses towards more and more sensitive matter-wave interferometry.Comment: 4 page

    Testing Gravity-Driven Collapse of the Wavefunction via Cosmogenic Neutrinos

    Full text link
    It is pointed out that the Diosi-Penrose ansatz for gravity-induced quantum state reduction can be tested by observing oscillations in the flavor ratios of neutrinos originated at cosmological distances. Since such a test would be almost free of environmental decoherence, testing the ansatz by means of a next generation neutrino detector such as IceCube would be much cleaner than by experiments proposed so far involving superpositions of macroscopic systems. The proposed microscopic test would also examine the universality of superposition principle at unprecedented cosmological scales.Comment: 4 pages; RevTeX4; Essentially the version published in PR
    corecore