2,578 research outputs found
The relevance of aerosol optical depth to cumulus fraction changes: a five-year climatology at the ACRF SGP site
International audienceThe objective of this study is to investigate, by observational means, the magnitude and sign of the actively discussed relationship between cloud fraction N and aerosol optical depth ?a. Collocated and coincident ground-based measurements and Terra/Aqua satellite observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site form the basis of this study. The N??a relationship occurred in a specific 5-year dataset of fair-weather cumulus (FWC) clouds and mostly non-absorbing aerosols. To reduce possible contamination of the aerosols on the cloud properties estimation (and vice versa), we use independent datasets of ?a and N obtained from the Multi-filter Rotating Shadowband Radiometer (MFRSR) measurements and from the ARM Active Remotely Sensed Clouds Locations (ARSCL) value-added product, respectively. Optical depth of the FWC clouds ?cld and effective radius of cloud droplets re are obtained from the MODerate resolution Imaging Spectroradiometer (MODIS) data. We found that relationships between cloud properties (N,?cld, re) and aerosol optical depth are time-dependent (morning versus afternoon). Observed time-dependent changes of cloud properties, associated with aerosol loading, control the variability of surface radiative fluxes. In comparison with pristine clouds, the polluted clouds are more transparent in the afternoon due to smaller cloud fraction, smaller optical depth and larger droplets. As a result, the corresponding correlation between the surface radiative flux and ?a is positive (warming effect of aerosol). Also we found that relationship between cloud fraction and aerosol optical depth is cloud size dependent. The cloud fraction of large clouds (larger than 1 km) is relatively insensitive to the aerosol amount. In contrast, cloud fraction of small clouds (smaller than 1 km) is strongly positively correlated with ?a. This suggests that an ensemble of polluted clouds tends to be composed of smaller clouds than a similar one in a pristine environment. One should be aware of these time- and size-dependent features when qualitatively comparing N??a relationships obtained from the satellite observations, surface measurements, and model simulations
Sleep Disorders, Obesity, Hypertension, and Cardiovascular Risk
In this paper we describe a concept-wise multi-preference semantics for description logic which has its root in the preferential approach for modeling defeasible reasoning in knowledge representation. We argue that this proposal, beside satisfying some desired properties, such as KLM postulates, and avoiding the drowning problem, also defines a plausible notion of semantics. We motivate the plausibility of the concept-wise multi-preference semantics by developing a logical semantics of self-organising maps, which have been proposed as possible candidates to explain the psychological mechanisms underlying category generalisation, in terms of multi-preference interpretations
q-Analogue of
A natural embedding for the
corresponding quantum algebras is constructed through the appropriate
comultiplication on the generators of each of the and
algebras. The above embedding is proved in their -boson realization by means
of the isomorphism between the (mn)(m)(n) algebras.Comment: 11 pages, no figures. In memory of professor R. P. Rousse
Miniaturized data loggers and computer programming improve seabird risk and damage assessments for marine oil spills in Atlantic Canada
Obtaining useful information on marine birds that can aid in oil spill (and other hydrocarbon release) risk and damage assessments in offshore environments is challenging. Technological innovations in miniaturization have allowed archival data loggers to be deployed successfully on marine birds vulnerable to hydrocarbons on water. A number of species, including murres (both Common, Uria aalge, and Thick-billed, U. lomvia) have been tracked using geolocation
devices in eastern Canada, increasing our knowledge of the seasonality and colony-specific nature of their susceptibility to oil on water in offshore hydrocarbon production areas and major shipping lanes. Archival data tags are starting to resolve questions around behaviour of vulnerable seabirds at small spatial scales relevant to oil spill impact modelling, specifically to determine the duration and frequency at which birds fly at sea. Advances in data capture methods using voice activated software have eased the burden on seabird observers who are collecting
increasingly more detailed information on seabirds during ship-board and aerial transects. Computer programs that integrate seabird density and bird behaviour have been constructed, all with a goal of creating more credible seabird oil spill risk and damage assessments. In this paper, we discuss how each of these technological and computing innovations can help define critical inputs into seabird risk and damage assessments, and when combined, can provide a more realistic understanding of the impacts to seabirds from any hydrocarbon release
Measurement of 222Rn dissolved in water at the Sudbury Neutrino Observatory
The technique used at the Sudbury Neutrino Observatory (SNO) to measure the
concentration of 222Rn in water is described. Water from the SNO detector is
passed through a vacuum degasser (in the light water system) or a membrane
contact degasser (in the heavy water system) where dissolved gases, including
radon, are liberated. The degasser is connected to a vacuum system which
collects the radon on a cold trap and removes most other gases, such as water
vapor and nitrogen. After roughly 0.5 tonnes of H2O or 6 tonnes of D2O have
been sampled, the accumulated radon is transferred to a Lucas cell. The cell is
mounted on a photomultiplier tube which detects the alpha particles from the
decay of 222Rn and its daughters. The overall degassing and concentration
efficiency is about 38% and the single-alpha counting efficiency is
approximately 75%. The sensitivity of the radon assay system for D2O is
equivalent to ~3 E(-15) g U/g water. The radon concentration in both the H2O
and D2O is sufficiently low that the rate of background events from U-chain
elements is a small fraction of the interaction rate of solar neutrinos by the
neutral current reaction.Comment: 14 pages, 6 figures; v2 has very minor change
Identifying Youth at Clinical High Risk: What’s the Emotional Impact?
Background:
Early intervention in major mental illness promises to improve the lives of those identified.
• But could identifying youth as at clinical high risk (CHR) for psychosis also do harm given that the majority never develop a psychotic disorder?
• Could telling someone they are at risk for psychosis activate internalized stigma that has been associated with increased emotional distress, social withdrawal, non-engagement in treatment, and suicide risk in CHR youth?
• Within the context of a larger study of stigma in CHR, we compared emotional responses to the CHR concept assessed before and after clinical feedback by study clinicians.
• Some participants had been told of their risk prior to study entry; others had not
Electric-field-induced coherent coupling of the exciton states in a single quantum dot
The signature of coherent coupling between two quantum states is an
anticrossing in their energies as one is swept through the other. In single
semiconductor quantum dots containing an electron-hole pair the eigenstates
form a two-level system that can be used to demonstrate quantum effects in the
solid state, but in all previous work these states were independent. Here we
describe a technique to control the energetic splitting of these states using a
vertical electric field, facilitating the observation of coherent coupling
between them. Near the minimum splitting the eigenstates rotate in the plane of
the sample, being orientated at 45{\deg} when the splitting is smallest. Using
this system we show direct control over the exciton states in one quantum dot,
leading to the generation of entangled photon pairs
Recommended from our members
Extended Canadian middle atmosphere model: zonal-mean climatology and physical parameterizations
This paper describes the energetics and zonal-mean state of the upward extension of the Canadian Middle Atmosphere Model, which extends from the ground to ~210 km. The model includes realistic parameterizations of the major physical processes from the ground up to the lower thermosphere and exhibits a broad spectrum of geophysical variability. The rationale for the extended model is to examine the nature of the physical and dynamical processes in the mesosphere/lower thermosphere (MLT) region without the artificial effects of an imposed sponge layer which can modify the circulation in an unrealistic manner. The zonal-mean distributions of temperature and zonal wind are found to be in reasonable agreement with observations in most parts of the model domain below ~150 km. Analysis of the global-average energy and momentum budgets reveals a balance between solar extreme ultraviolet heating and molecular diffusion and a thermally direct viscous meridional circulation above 130 km, with the viscosity coming from molecular diffusion and ion drag. Below 70 km, radiative equilibrium prevails in the global mean. In the MLT region between ~70 and 120 km, many processes contribute to the global energy budget. At solstice, there is a thermally indirect meridional circulation driven mainly by parameterized nonorographic gravity-wave drag. This circulation provides a net global cooling of up to 25 K d^-1
- …