9 research outputs found

    Critical Decay at Higher-Order Glass-Transition Singularities

    Full text link
    Within the mode-coupling theory for the evolution of structural relaxation in glass-forming systems, it is shown that the correlation functions for density fluctuations for states at A_3- and A_4-glass-transition singularities can be presented as an asymptotic series in increasing inverse powers of the logarithm of the time t: ϕ(t)figi(x)\phi(t)-f\propto \sum_i g_i(x), where gn(x)=pn(lnx)/xng_n(x)=p_n(\ln x)/x^n with p_n denoting some polynomial and x=ln (t/t_0). The results are demonstrated for schematic models describing the system by solely one or two correlators and also for a colloid model with a square-well-interaction potential.Comment: 26 pages, 7 figures, Proceedings of "Structural Arrest Transitions in Colloidal Systems with Short-Range Attractions", Messina, Italy, December 2003 (submitted

    Non-Equilibrium Thermodynamic Description of the Coupling between Structural and Entropic Modes in Supercooled Liquids

    Full text link
    The density response of supercooled glycerol to an impulsive stimulated thermal grating (q=0.63 micron^-1) has been studied in the temperature range (T=200-340 K) where the structure rearrangement (alpha-relaxation) and thermal diffusion occur on the same time scale. A strong interaction between the two modes occurs giving rise to a dip in the T-dependence of the apparent thermal conductivity and a flattening of the apparent alpha-relaxation time upon cooling. A non-equilibrium thermodynamic (NET) model for the long time response of relaxing fluids has been developed. The model is capable to reproduce the experimental data and to explain the observed phenomenology.Comment: to be published in PRE Rapid Commu

    Metastable Dynamics above the Glass Transition

    Full text link
    The element of metastability is incorporated in the fluctuating nonlinear hydrodynamic description of the mode coupling theory (MCT) of the liquid-glass transition. This is achieved through the introduction of the defect density variable nn into the set of slow variables with the mass density ρ\rho and the momentum density g{\bf g}. As a first approximation, we consider the case where motions associated with nn are much slower than those associated with ρ\rho. Self-consistently, assuming one is near a critical surface in the MCT sense, we find that the observed slowing down of the dynamics corresponds to a certain limit of a very shallow metastable well and a weak coupling between ρ\rho and nn. The metastability parameters as well as the exponents describing the observed sequence of time relaxations are given as smooth functions of the temperature without any evidence for a special temperature. We then investigate the case where the defect dynamics is included. We find that the slowing down of the dynamics corresponds to the system arranging itself such that the kinetic coefficient γv\gamma_v governing the diffusion of the defects approaches from above a small temperature-dependent value γvc\gamma^c_v.Comment: 38 pages, 14 figures (6 figs. are included as a uuencoded tar- compressed file. The rest is available upon request.), RevTEX3.0+eps

    Nonlinear Hydrodynamics of a Hard Sphere Fluid Near the Glass Transition

    Get PDF
    We conduct a numerical study of the dynamic behavior of a dense hard sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free energy functional of the Ramakrishnan-Yussouff form. We find that the system exhibits glassy behavior as evidenced through stretched exponential decay and two-stage relaxation of the density correlation function. The characteristic times grow with increasing density according to the Vogel-Fulcher law. The wavenumber dependence of the kinetics is extensively explored. The connection of our results with experiment, mode coupling theory, and molecular dynamics results is discussed.Comment: 34 Pages, Plain TeX, 12 PostScript Figures (not included, available on request

    Mode-coupling theory and the glass transition in supercooled liquids

    No full text
    corecore