543 research outputs found
A connection between stress and development in the multicelular prokaryote Streptomyces coelicolor
Morphological changes leading to aerial mycelium formation and sporulation in the mycelial bacterium Streptomyces coelicolor rely on establishing distinct patterns of gene expression in separate regions of the colony. sH was identified previously as one of three paralogous sigma factors associated with stress responses in S. coelicolor. Here, we show that sigH and the upstream gene prsH (encoding a putative antisigma factor of sH) form an operon transcribed from two developmentally regulated promoters, sigHp1 and sigHp2. While sigHp1 activity is confined to the early phase of growth, transcription of sigHp2 is dramatically induced at the time of aerial hyphae formation. Localization of sigHp2 activity using a transcriptional fusion to the green fluorescent protein reporter gene (sigHp2–egfp) showed that sigHp2 transcription is spatially restricted to sporulating aerial hyphae in wild-type S. coelicolor. However, analysis of mutants unable to form aerial hyphae (bld mutants) showed that sigHp2 transcription and sH protein levels are dramatically upregulated in a bldD mutant, and that the sigHp2–egfp fusion was expressed ectopically in the substrate mycelium in the bldD background. Finally, a protein possessing sigHp2 promoter-binding activity was purified to homogeneity from crude mycelial extracts of S. coelicolor and shown to be BldD. The BldD binding site in the sigHp2 promoter was defined by DNase I footprinting. These data show that expression of sH is subject to temporal and spatial regulation during colony development, that this tissue-specific regulation is mediated directly by the developmental transcription factor BldD and suggest that stress and developmental programmes may be intimately connected in Streptomyces morphogenesis
Conduit flow experiments help constraining the regime of explosive eruptions
It is currently impractical to measure what happens in a volcano during an explosive
eruption, and up to now much of our knowledge depends on theoretical models. Here we
show, by means of large‐scale experiments, that the regime of explosive events can be
constrained on the basis of the characteristics of magma at the point of fragmentation
and conduit geometry. Our model, whose results are consistent with the literature, is a
simple tool for defining the conditions at conduit exit that control the most hazardous
volcanic regimes. Besides the well‐known convective plume regime, which generates
pyroclastic fallout, and the vertically collapsing column regime, which leads to pyroclastic
flows, we introduce an additional regime of radially expanding columns, which form when
the eruptive gas‐particle mixture exits from the vent at overpressure with respect to
atmosphere. As a consequence of the radial expansion, a dilute collapse occurs, which
favors the formation of density currents resembling natural base surges. We conclude that
a quantitative knowledge of magma fragmentation, i.e., particle size, fragmentation
energy, and fragmentation speed, is critical for determining the eruption regime.Research was partially funded by DPC-INGV
agreement 07‐09 and MUR PRIN 06.PublishedB042043.6. Fisica del vulcanismoJCR Journalrestricte
Conduit flow experiments help constraining the regime of explosive eruptions
It is currently impractical to measure what happens in a volcano during an explosive
eruption, and up to now much of our knowledge depends on theoretical models. Here we
show, by means of large‐scale experiments, that the regime of explosive events can be
constrained on the basis of the characteristics of magma at the point of fragmentation
and conduit geometry. Our model, whose results are consistent with the literature, is a
simple tool for defining the conditions at conduit exit that control the most hazardous
volcanic regimes. Besides the well‐known convective plume regime, which generates
pyroclastic fallout, and the vertically collapsing column regime, which leads to pyroclastic
flows, we introduce an additional regime of radially expanding columns, which form when
the eruptive gas‐particle mixture exits from the vent at overpressure with respect to
atmosphere. As a consequence of the radial expansion, a dilute collapse occurs, which
favors the formation of density currents resembling natural base surges. We conclude that
a quantitative knowledge of magma fragmentation, i.e., particle size, fragmentation
energy, and fragmentation speed, is critical for determining the eruption regime
Conduit flow experiments help constraining the regime of explosive eruptions
It is currently impractical to measure what happens in a volcano during an explosive eruption,
and up to now much of our knowledge depends on theoretical models. Here we show, by means of
large-scale experiments, that the regime of explosive events can be constrained based on the
characteristics of magma at the point of fragmentation and conduit geometry. Our model, whose
results are consistent with the literature, is a simple tool for defining the conditions at conduit exit
that control the most hazardous volcanic regimes. Besides the well-known convective plume
regime, which generates pyroclastic fallout, and the vertically collapsing column regime, which
leads to pyroclastic flows, we introduce an additional regime of radially expanding columns, which
form when the eruptive gas-particle mixture exits from the vent at overpressure with respect to
atmosphere. As a consequence of the radial expansion, a dilute collapse occurs, which favours the
formation of density currents resembling natural base surges. We conclude that a quantitative
knowledge of magma fragmentation, i.e. particle size, fragmentation energy and fragmentation
speed, is critical for determining the eruption regime
Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons
The flux of cosmic-ray induced single hadrons near sea level has been
measured with the large hadron calorimeter of the KASCADE experiment. The
measurement corroborates former results obtained with detectors of smaller size
if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The
program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the
atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be
described with a power law parametrized as
dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV
region the proton flux compares well with the results from recent measurements
of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa
Large scale cosmic-ray anisotropy with KASCADE
The results of an analysis of the large scale anisotropy of cosmic rays in
the PeV range are presented. The Rayleigh formalism is applied to the right
ascension distribution of extensive air showers measured by the KASCADE
experiment.The data set contains about 10^8 extensive air showers in the energy
range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right
ascension distributions in this energy range. This accounts for all showers as
well as for subsets containing showers induced by predominantly light
respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes
are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary
energy.Comment: accepted by The Astrophysical Journa
Dynamical mean-field approach to materials with strong electronic correlations
We review recent results on the properties of materials with correlated
electrons obtained within the LDA+DMFT approach, a combination of a
conventional band structure approach based on the local density approximation
(LDA) and the dynamical mean-field theory (DMFT). The application to four
outstanding problems in this field is discussed: (i) we compute the full
valence band structure of the charge-transfer insulator NiO by explicitly
including the p-d hybridization, (ii) we explain the origin for the
simultaneously occuring metal-insulator transition and collapse of the magnetic
moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of
plane-wave pseudopotentials which allows us to compute the orbital order and
cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a
general explanation for the appearance of kinks in the effective dispersion of
correlated electrons in systems with a pronounced three-peak spectral function
without having to resort to the coupling of electrons to bosonic excitations.
These results provide a considerable progress in the fully microscopic
investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for
publication in the Special Topics volume "Cooperative Phenomena in Solids:
Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
Structure-Function Analysis of the HrpB2-HrcU Interaction in the Xanthomonas citri Type III Secretion System
Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcUAAAH) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the ΔhrcU mutant with HrcUAAAH produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the ΔhrcU mutant complemented with HrcUAAAH, suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the ΔhrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta
Inclusive jet cross sections and dijet correlations in photoproduction at HERA
Inclusive jet cross sections in photoproduction for events containing a
meson have been measured with the ZEUS detector at HERA using an integrated
luminosity of . The events were required to have a
virtuality of the incoming photon, , of less than 1 GeV, and a
photon-proton centre-of-mass energy in the range . The measurements are compared with next-to-leading-order (NLO) QCD
calculations. Good agreement is found with the NLO calculations over most of
the measured kinematic region. Requiring a second jet in the event allowed a
more detailed comparison with QCD calculations. The measured dijet cross
sections are also compared to Monte Carlo (MC) models which incorporate
leading-order matrix elements followed by parton showers and hadronisation. The
NLO QCD predictions are in general agreement with the data although differences
have been isolated to regions where contributions from higher orders are
expected to be significant. The MC models give a better description than the
NLO predictions of the shape of the measured cross sections.Comment: 43 pages, 12 figures, charm jets ZEU
Dissociation of virtual photons in events with a leading proton at HERA
The ZEUS detector has been used to study dissociation of virtual photons in
events with a leading proton, gamma^* p -> X p, in e^+p collisions at HERA. The
data cover photon virtualities in two ranges, 0.03<Q^2<0.60 GeV^2 and 2<Q^2<100
GeV^2, with M_X>1.5 GeV, where M_X is the mass of the hadronic final state, X.
Events were required to have a leading proton, detected in the ZEUS leading
proton spectrometer, carrying at least 90% of the incoming proton energy. The
cross section is presented as a function of t, the squared four-momentum
transfer at the proton vertex, Phi, the azimuthal angle between the positron
scattering plane and the proton scattering plane, and Q^2. The data are
presented in terms of the diffractive structure function, F_2^D(3). A
next-to-leading-order QCD fit to the higher-Q^2 data set and to previously
published diffractive charm production data is presented
- …