253 research outputs found

    Self-organization of ultrasound in viscous fluids

    Full text link
    We report the theoretical and experimental demonstration of pattern formation in acoustics. The system is an acoustic resonator containing a viscous fluid. When the system is driven by an external periodic force, the ultrasonic field inside the cavity experiences different pattern-forming instabilities leading to the emergence of periodic structures. The system is also shown to possess bistable regimes, in which localized states of the ultrasonic field develop. The thermal nonlinearity in the viscous fluid, together with the far-from-equilibrium conditions, are is the responsible of the observed effects

    Entangled States and Entropy Remnants of a Photon-Electron System

    Full text link
    In the present paper an example of entanglement between two different kinds of interacting particles, photons and electrons is analysed. The initial-value problem of the Schroedinger equation is solved non-perturbatively for the system of a free electron interacting with a quantized mode of the electromagnetic radiation. Wave packets of the dressed states so obtained are constructed in order to describe the spatio-temporal separation of the subsystems before and after the interaction. The joint probability amplitudes are calculated for the detection of the electron at some space-time location and the detection of a definite number of photons. The analytical study of the time evolution of entanglement between the initially separated electron wave packet and the radiation mode leads to the conclusion that in general there are non-vanishing entropy remnants in the subsystems after the interaction. On the basis of the simple model to be presented here, the calculated values of the entropy remnants crucially depend on the character of the switching-on and off of the interaction.Comment: 12 pages, 2 figure

    Momentum dependence in the dynamically assisted Sauter-Schwinger effect

    Full text link
    Recently it has been found that the superposition of a strong and slow electric field with a weaker and faster pulse can significantly enhance the probability for non-perturbative electron-positron pair creation out of the vacuum -- the dynamically assisted Sauter-Schwinger effect. Via the WKB method, we estimate the momentum dependence of the pair creation probability and compare it to existing numerical results. Besides the theoretical interest, a better understanding of this pair creation mechanism should be helpful for the planned experiments aiming at its detection.Comment: 4 pages RevTeX, 1 figur

    Dynamics of the Chiral Magnetic Effect in a weak magnetic field

    Full text link
    We investigate the real-time dynamics of the chiral magnetic effect in quantum electrodynamics (QED) and quantum chromodynamics (QCD). We consider a field configuration of parallel (chromo)electric and (chromo)magnetic fields with a weak perpendicular electromagnetic magnetic field. The chiral magnetic effect induces an electromagnetic current along this perpendicular magnetic field, which we will compute using linear response theory. We discuss specific results for a homogeneous sudden switch-on and a pulsed (chromo)electric field in a static and homogeneous (chromo)magnetic field. Our methodology can be easily extended to more general situations. The results are useful for investigating the chiral magnetic effect with heavy ion collisions and with lasers that create strong electromagnetic fields. As a side result we obtain the rate of chirality production for massive fermions in parallel electric and magnetic fields that are static and homogeneous.Comment: 13 pages, 7 figures, revte

    Quantum simulator for the Schwinger effect with atoms in bi-chromatic optical lattices

    Full text link
    Ultra-cold atoms in specifically designed optical lattices can be used to mimic the many-particle Hamiltonian describing electrons and positrons in an external electric field. This facilitates the experimental simulation of (so far unobserved) fundamental quantum phenomena such as the Schwinger effect, i.e., spontaneous electron-positron pair creation out of the vacuum by a strong electric field.Comment: 4 pages, 2 figures; minor corrections and improvements in text and in figures; references adde

    Sauter-Schwinger like tunneling in tilted Bose-Hubbard lattices in the Mott phase

    Full text link
    We study the Mott phase of the Bose-Hubbard model on a tilted lattice. On the (Gutzwiller) mean-field level, the tilt has no effect -- but quantum fluctuations entail particle-hole pair creation via tunneling. For small potential gradients (long-wavelength limit), we derive a quantitative analogy to the Sauter-Schwinger effect, i.e., electron-positron pair creation out of the vacuum by an electric field. For large tilts, we obtain resonant tunneling related to Bloch oscillations.Comment: 4 pages, 1 figur

    Enhanced inverse bremsstrahlung heating rates in a strong laser field

    Full text link
    Test particle studies of electron scattering on ions, in an oscillatory electromagnetic field have shown that standard theoretical assumptions of small angle collisions and phase independent orbits are incorrect for electron trajectories with drift velocities smaller than quiver velocity amplitude. This leads to significant enhancement of the electron energy gain and the inverse bremsstrahlung heating rate in strong laser fields. Nonlinear processes such as Coulomb focusing and correlated collisions of electrons being brought back to the same ion by the oscillatory field are responsible for large angle, head-on scattering processes. The statistical importance of these trajectories has been examined for mono-energetic beam-like, Maxwellian and highly anisotropic electron distribution functions. A new scaling of the inverse bremsstrahlung heating rate with drift velocity and laser intensity is discussed.Comment: 12 pages, 12 figure

    Damping of electromagnetic waves due to electron-positron pair production

    Full text link
    The problem of the backreaction during the process of electron-positron pair production by a circularly polarized electromagnetic wave propagating in a plasma is investigated. A model based on the relativistic Boltzmann-Vlasov equation with a source term corresponding to the Schwinger formula for the pair creation rate is used. The damping of the wave, the nonlinear up-shift of its frequency due to the plasma density increase and the effect of the damping on the wave polarization and on the background plasma acceleration are investigated as a function of the wave amplitude.Comment: 11 pages, 5 figures; revtex
    • …
    corecore