565 research outputs found

    Comment on "Spatial optical solitons in highly nonlocal media" and related papers

    Get PDF
    In a recent paper [A. Alberucci, C. Jisha, N. Smyth, and G. Assanto, Phys. Rev. A 91, 013841 (2015)], Alberucci et al. have studied the propagation of bright spatial solitary waves in highly nonlocal media. We find that the main results in that and related papers, concerning soliton shape and dynamics, based on the accessible soliton (AS) approximation, are incorrect; the correct results have already been published by others. These and other inconsistencies in the paper follow from the problems in applying the AS approximation in earlier papers by the group that propagated to the later papers. The accessible soliton theory cannot describe accurately the features and dynamics of solitons in highly nonlocal media.Comment: 2 page

    Galactic Punctuated Equilibrium: How to Undermine Carter's Anthropic Argument in Astrobiology

    Full text link
    We investigate a new strategy which can defeat the (in)famous Carter's "anthropic" argument against extraterrestrial life and intelligence. In contrast to those already considered by Wilson, Livio, and others, the present approach is based on relaxing hidden uniformitarian assumptions, considering instead a dynamical succession of evolutionary regimes governed by both global (Galaxy-wide) and local (planet- or planetary system-limited) regulation mechanisms. This is in accordance with recent developments in both astrophysics and evolutionary biology. Notably, our increased understanding of the nature of supernovae and gamma-ray bursts, as well as of strong coupling between the Solar System and the Galaxy on one hand, and the theories of "punctuated equilibria" of Eldredge and Gould and "macroevolutionary regimes" of Jablonski, Valentine, et al. on the other, are in full accordance with the regulation- mechanism picture. The application of this particular strategy highlights the limits of application of Carter's argument, and indicates that in the real universe its applicability conditions are not satisfied. We conclude that drawing far-reaching conclusions about the scarcity of extraterrestrial intelligence and the prospects of our efforts to detect it on the basis of this argument is unwarranted.Comment: 3 figures, 26 page

    Spin Hall Current Driven by Quantum Interferences in Mesoscopic Rashba Rings

    Full text link
    We propose an all-electrical nanoscopic structure where {\em pure} spin current is induced in the transverse voltage probes attached to {\em quantum-coherent} one-dimensional ring when conventional unpolarized charge current is injected through its longitudinal leads. Tuning of the Rashba spin-orbit coupling in semiconductor heterostructure hosting the ring generates quasi-periodic oscillations of the predicted spin Hall current due to {\em spin-sensitive quantum-interference effects} caused by the difference in Aharonov-Casher phase acquired by opposite spins states traveling clockwise and counterclockwise. Its amplitude is comparable to the mesoscopic spin Hall current predicted for finite-size two-dimensional electron gases, while it gets reduced in wide two-dimensional or disordered rings.Comment: 5 pages, 4 color figure

    Gr\"obner bases in the mod 22 cohomology of oriented Grassmann manifolds G~2t,3\widetilde G_{2^t,3}

    Full text link
    For nn a power of two, we give a complete description of the cohomology algebra H∗(G~n,3;Z2)H^*(\widetilde G_{n,3};\mathbb Z_2) of the Grassmann manifold G~n,3\widetilde G_{n,3} of oriented 33-planes in Rn\mathbb R^n. We do this by finding a reduced Gr\"obner basis for an ideal closely related to this cohomology algebra. Using this Gr\"obner basis we also present an additive basis for H∗(G~n,3;Z2)H^*(\widetilde G_{n,3};\mathbb Z_2)

    Transverse Spin-Orbit Force in the Spin Hall Effect in Ballistic Semiconductor Wires

    Full text link
    We introduce the spin and momentum dependent {\em force operator} which is defined by the Hamiltonian of a {\em clean} semiconductor quantum wire with homogeneous Rashba spin-orbit (SO) coupling attached to two ideal (i.e., free of spin and charge interactions) leads. Its expectation value in the spin-polarized electronic wave packet injected through the leads explains why the center of the packet gets deflected in the transverse direction. Moreover, the corresponding {\em spin density} will be dragged along the transverse direction to generate an out-of-plane spin accumulation of opposite signs on the lateral edges of the wire, as expected in the phenomenology of the spin Hall effect, when spin-↑\uparrow and spin-↓\downarrow polarized packets (mimicking the injection of conventional unpolarized charge current) propagate simultaneously through the wire. We also demonstrate that spin coherence of the injected spin-polarized wave packet will gradually diminish (thereby diminishing the ``force'') along the SO coupled wire due to the entanglement of spin and orbital degrees of freedom of a single electron, even in the absence of any impurity scattering.Comment: 5 pages, 4 color EPS figures; 2 new figures and expanded discussion on the sign of spin Hall quantities. To appear in Phys. Rev. B 72 (2005

    Mesoscopic Spin Hall Effect in Multiprobe Ballistic Spin-Orbit Coupled Semiconductor Bridges

    Full text link
    We predict that unpolarized charge current driven through the longitudinal leads attached to ballistic quantum-coherent two-dimensional electron gas (2DEG) in semiconductor heterostructure will induce a {\em pure} spin current, which is not accompanied by any net charge flow, in the transverse voltage probes. Its magnitude can be tuned by the Rashba spin-orbit (SO) interaction and, moreover, it is resilient to weak spin-independent scattering off impurities within the metallic diffusive regime. While the polarization vector of the spin transported through the transverse leads is not orthogonal to the plane of 2DEG, we demonstrate that only two components (out-of-plane and longitudinal) of the transverse spin current are signatures of the spin Hall effect in four-probe Rashba spin-split semiconductor nanostructures. The linear response spin Hall current, obtained from the multiprobe Landauer-B\" uttiker scattering formalism generalized for quantum transport of spin, is the Fermi-surface determined nonequilibrium quantity whose scaling with the 2DEG size LL reveals the importance of processes occurring on the spin precession {\em mesoscale} LSOL_{\rm SO} (on which spin precesses by an angle π\pi)--the out-of-plane component of the transverse spin current exhibits quasioscillatory behavior for L≲LSOL \lesssim L_{\rm SO} (attaining the maximum value in 2DEGs of the size LSO×LSOL_{\rm SO} \times L_{\rm SO}), while it reaches the asymptotic value in the macroscopic regime L≫LSOL \gg L_{\rm SO}. Furthermore, these values of the spin Hall current can be manipulated by the measuring geometry defined by the attached leads.Comment: 12 pages, 6 color EPS figures; expanded discussion to emphasize crucial role played by processes on the spin precession mesoscal
    • …
    corecore