872 research outputs found
Interplay of spin-discriminated Andreev bound states forming the 0- transition in Superconductor-Ferromagnet-Superconductor Junctions
The Josephson current in S-F-S junctions is described by taking into account
different reflection (transmission) amplitudes for quasiparticles with spin up
and down. We show that the 0- transition in the junctions can take place
at some temperature only for sufficiently strong spin-activity of the
interface. In particular, Andreev interface bound state energies in one spin
channel have to be all negative, while in the other one positive. Only one spin
channel contributes then to the zero-temperature Josephson current. At the
temperature of the 0- transition two spin channels substantially
compensate each other and can result in a pronounced minimum in the critical
current in tunnel junctions. The minimal critical current is quadratic in small
transparency and contains first and second harmonics of one and the same order.Comment: 5 pages, revtex, 2 ps-figure
Magnetic interference patterns in superconducting junctions: Effects of anharmonic current-phase relations
A microscopic theory of the magnetic-field modulation of critical currents is
developed for plane Josephson junctions with anharmonic current-phase
relations. The results obtained allow examining temperature-dependent
deviations of the modulation from the conventional interference pattern. For
tunneling through localized states in symmetric short junctions with a
pronounced anharmonic behavior, the deviations are obtained and shown to depend
on distribution of channel transparencies. For constant transparency the
deviations vanish not only near Tc, but also at T=0. If Dorokhov bimodal
distribution for transparency eigenvalues holds, the averaged deviation
increases with decreasing temperature and takes its maximum at T=0.Comment: 6 pages, 6 figure
Superconducting Junctions with Ferromagnetic, Antiferromagnetic or Charge-Density-Wave Interlayers
Spectra and spin structures of Andreev interface states and the Josephson
current are investigated theoretically in junctions between clean
superconductors (SC) with ordered interlayers. The Josephson current through
the ferromagnet-insulator-ferromagnet interlayer can exhibit a nonmonotonic
dependence on the misorientation angle. The characteristic behavior takes place
if the pi state is the equilibrium state of the junction in the particular case
of parallel magnetizations. We find a novel channel of quasiparticle reflection
(Q reflection) from the simplest two-sublattice antiferromagnet (AF) on a
bipartite lattice. As a combined effect of Andreev and Q reflections, Andreev
states arise at the AF/SC interface. When the Q reflection dominates the
specular one, Andreev bound states have almost zero energy on AF/ s-wave SC
interfaces, whereas they lie near the edge of the continuous spectrum for
AF/d-wave SC boundaries. For an s-wave SC/AF/s-wave SC junction, the bound
states are found to split and carry the supercurrent. Our analytical results
are based on a novel quasiclassical approach, which applies to interfaces
involving itinerant antiferromagnets. Similar effects can take place on
interfaces of superconductors with charge density wave materials (CDW),
including the possible d-density wave state (DDW) of the cuprates.Comment: LT24 conference proceeding, 2 pages, 1 figur
0-pi transitions in Josephson junctions with antiferromagnetic interlayers
We show that the dc Josephson current through
superconductor-antiferromagnet-superconductor (S/AF/S) junctions manifests a
remarkable atomic scale dependence on the interlayer thickness. At low
temperatures the junction is either a 0- or pi-junction depending on whether
the AF interlayer consists of an even or odd number of atomic layers. This is
associated with different symmetries of the AF interlayers in the two cases. In
the junction with odd AF interlayers an additional pi-0 transition can take
place as a function of temperature. This originates from the interplay of
spin-split Andreev bound states. Experimental implications of these theoretical
findings are discussed.Comment: 4 pages, 2 figure
Subharmonic Gap Structure in Superconductor/Ferromagnet/Superconductor Junctions
The behavior of dc subgap current in magnetic quantum point contact is
discussed for the case of low-transparency junction with different tunnel
probabilities for spin-up () and spin-down ()
electrons. Due to the presence of Andreev bound states in the
system the positions of subgap electric current steps are split at temperature with respect to the
nonmagnetic result . It is found that under the condition
the spin current also manifests subgap
structure, but only for odd values of . The split steps corresponding to
in subgap electric and spin currents are analytically calculated and
the following steps are described qualitatively.Comment: 4 pages, 1 figure, minor stylistic changes, journal-ref adde
Combined Paramagnetic and Diamagnetic Response of YBCO
It has been predicted that the zero frequency density of states of YBCO in
the superconducting phase can display interesting anisotropy effects when a
magnetic field is applied parallel to the copper-oxide planes, due to the
diamagnetic response of the quasi-particles. In this paper we incorporate
paramagnetism into the theory and show that it lessens the anisotropy and can
even eliminate it altogether. At the same time paramagnetism also changes the
scaling with the square root of the magnetic field first deduced by Volovik
leading to an experimentally testable prediction. We also map out the analytic
structure of the zero frequency density of states as a function of the
diamagnetic and paramagnetic energies. At certain critical magnetic field
values we predict kinks as we vary the magnetic field. However these probably
lie beyond currently accessible field strengths
pi-Junction behavior and Andreev bound states in Kondo quantum dots with superconducting leads
We investigate the temperature- and coupling-dependent transport through
Kondo dot contacts with symmetric superconducting s-wave leads. For finite
temperature T we use a superconducting extension of a selfconsistent auxiliary
boson scheme, termed SNCA, while at T=0 a perturbative renormalization group
treatment is applied. The finite-temperature phase diagram for the 0--pi
transition of the Josephson current in the junction is established and related
to the phase-dependent position of the subgap Kondo resonance with respect to
the Fermi energy. The conductance of the contact is evaluated in the zero-bias
limit. It approaches zero in the low-temperature regime, however, at finite T
its characteristics are changed through the coupling- and temperature-dependent
0--pi transition.Comment: 12 pages, 12 figure
Andreev bound states and tunneling characteristics of a non-centrosymmetric superconductor
The tunneling characteristics of planar junctions between a normal metal and
a non-centrosymmetric superconductor like CePt3Si are examined. It is shown
that the superconducting phase with mixed parity can give rise to
characteristic zero-bias anomalies in certain junction directions. The origin
of these zero-bias anomalies are Andreev bound states at the interface. The
tunneling characteristics for different directions allow to test the structure
of the parity-mixed pairing state.Comment: 4 pages, 3 figure
The Casimir zero-point radiation pressure
We analyze some consequences of the Casimir-type zero-point radiation
pressure. These include macroscopic "vacuum" forces on a metallic layer
in-between a dielectric medium and an inert () one. Ways
to control the sign of these forces, based on dielectric properties of the
media, are thus suggested. Finally, the large positive Casimir pressure, due to
surface plasmons on thin metallic layers, is evaluated and discussed.Comment: 4 2-column pages, LATE
Retarded Casimir-Polder force on an atom near reflecting microstructures
We derive the fully retarded energy shift of a neutral atom in two different
geometries useful for modelling etched microstructures. First we calculate the
energy shift due to a reflecting cylindrical wire, and then we work out the
energy shift due to a semi-infinite reflecting half-plane. We analyze the
results for the wire in various limits of the wire radius and the distance of
the atom from the wire, and obtain simple asymptotic expressions useful for
estimates. For the half-plane we find an exact representation of the
Casimir-Polder interaction in terms of a single, fast converging integral,
which is easy to evaluate numerically.Comment: 12 pages, 8 figure
- …