5,654 research outputs found

    Microcracking in piezoelectric materials by the Boundary Element Method

    Get PDF
    A 3D boundary element model for piezoelectric polycrystalline micro-cracking is discussed in this contribution. The model is based on the boundary integral representation of the electro-mechanical behavior of individual grains and on the use of a generalized cohesive formulation for inter-granular micro-cracking. The boundary integral formulation allows to address the electro-mechanical boundary value problem in terms of generalized grain boundary and inter-granular displacements and tractions only, which implies the natural inclusion of the cohesive laws in the formulation, the simplification of the analysis pre-processing stage, and the reduction of the number of degrees of freedom of the overall analysis with respect to other popular numerical methods

    Use of natural resins in repairing damaged timber beams – An experimental investigation

    Get PDF
    Different techniques including the application of steel elements, composite materials and polymeric resins have been used in the past to repair damaged timber beams. However, there is a growing need to replace these materials with those with minimal environmental impact. In addition, stringent requirements of conservation authorities on the compatibility between repair and parent materials have also necessitated search for innovative repair materials for timber beams. Therefore, an increasing shift of focus towards the use of materials derived from natural sources in repairing and reinforcing timber structures is currently experienced. This paper presents the results of an exploratory study on the use of natural resins (rosin and bone glue) in repairing oak timber beams. 15 oak timber beams with cross section dimensions of 67 x 67 mm and 1100 mm in length were tested in four-point bending to failure. Undamaged, damaged (unrepaired) and damaged but repaired timber beams (with rosin and bone glue) were tested. The effectiveness of the repair material and technique was analysed based on the bending capacity and mid span deflection at failure. The initial results show negligible effectiveness of rosin in repairing timber beams. In fact, about 16% reduction (average) in load carrying capacity with a corresponding 5% decrease (average) in maximum displacement was recorded. Relatively higher level of effectiveness was recorded with the use of bone glue (about 10 % average increase in load carrying capacity). However, over 30% corresponding average increase in the maximum displacement was also recorded. Further work investigating different repair techniques and other natural resins is presently underway

    A three-dimensional boundary element model for the analysis of polycrystalline materials at the microscale

    Get PDF
    A three-dimensional multi-domain anisotropic boundary element formulation is presented for the analysis of polycrystalline microstructures. The formulation is naturally expressed in terms of intergranular displacements and tractions that play an important role in polycrystalline micromechanics, micro-damage and micro-cracking. The artificial morphology is generated by Hardcore Voronoi tessellation, which embodies the main statistical features of polycrystalline microstructures. Each crystal is modeled as an anisotropic elastic region and the integrity of the aggregate is restored by enforcing interface continuity and equilibrium between contiguous grains. The developed technique has been applied to the numerical homogenization of SiC and the obtained results agree very well with available data

    Intergranular damage and fracture in polycrystalline materials. A novel 3D microstructural grain-boundary formulation

    Get PDF
    The design of advanced materials requires a deep understanding of degradation and failure pro- cesses. It is widely recognized that the macroscopic material properties depend on the features of the microstructure. The knowledge of this link, which is the main subject of Micromechanics [1], is of relevant technological interest, as it may enable the design of materials with specific requirements by means of suitable manipulations of the microstructure. Polycrystalline materials are used in many technological applications. Their microstructure is characterized by the grains morphology, size distribution, anisotropy, crystallographic orientation, stiffness and toughness mismatch and by the physical-chemical properties of the intergranular interfaces. These aspects have a direct influence on the initiation and evolution of micro-damage, which is also sensitive to the presence of micro-imperfections. Any theory trying to explain the failure mechanisms in these materials must then accommodate a relevant number of parameters. In this study, a novel 3D grain-boundary micro-mechanical model for the analysis of intergranular degradation and failure in polycrystalline materials is presented. The microstructure is generated by means of Voronoi tessellations, able to retain the main statistical features of polycrystals. The formulation is built on a boundary integral representation of the elastic problem for the crystals, that are modeled as 3D anisotropic elastic domains with arbitrary orientation [2]. This representa- tion involves only mechanical variables at the grains interfaces, i.e. displacement jumps and trac- tions, that play an important role in the micromechanics of polycrystals. The aggregate integrity is restored by enforcing suitable intergranular conditions. The onset and evolution of intergranular damage is modeled using an extrinsic irreversible cohesive law, able to address mixed-mode fail- ure conditions. Upon interface failure, a non-linear frictional contact analysis is used, to address separation, sliding or sticking between the formed micro-crack surfaces. The incremental-iterative algorithm for tracking the micro-evolution is presented. Several numerical tests on pseudo and fully three-dimensional microstructures are discussed. The present formulation is a promising tool in the framework of multiscale analysis of degradation and failure in polycrystalline materials

    Computational aeroelastic analysis of wings based on the structural discontinuous Galerkin and aerodynamic vortex lattice methods

    Get PDF
    An original computational framework for the aeroelastic analysis of wings featuring general transverse section is developed. The framework is based on the coupling between a novel discontinuous Galerkin structural model and an aerodynamic vortex lattice method, which is implemented in both the planar and non-planar version. The structural model, which constitutes the novelty of the present work, allows generalized kinematics and is thus able to capture higher-order structural deformation modes. With respect to other more used structural representations, the discontinuous Galerkin approach is based on the use of discontinuous basis functions and suitably-defined boundary terms to enforce the inter-element continuity and boundary conditions. Such features naturally enable high-order accuracy, ease of parallelization and, specifically for this work, straightforward coupling with the vortex lattice method. The framework is validated through benchmark tests, providing favourable matching with reference literature data

    Semilinear delay evolution equations with measures subjected to nonlocal initial conditions

    Get PDF
    We prove a global existence result for bounded solutions to a class of abstract semilinear delay evolution equations with measures subjected to nonlocal initial data of the form: du(t)={Au(t)+f(t,u t )}dt+dg(t) with t∈R+ and u(t)=h(u)(t) for t∈[−τ,0], with τ≥0. The operator A:D(A)⊆X→X is the infinitesimal generator of a C0 -semigroup, f:R+ ×R([−τ,0];X)→X is continuous, g∈BVloc (R+ ;X) and h:Rb (R + ;X)→R([−τ,0];X) is nonexpansive

    Effects of voids and flaws on the mechanical properties and on intergranular damage and fracture for polycrystalline materials

    Get PDF
    It is widely recognized that the macroscopic material properties depend on the features of the microstructure. The understanding of the links between microscopic and macroscopic material properties, main topic of Micromechanics, is of relevant technological interest, as it may enable the deep understanding of the mechanisms governing materials degradation and failure. Polycrystalline materials are used in many engineering applications. Their microstructure is determined by distribution, size, morphology, anisotropy and orientation of the crystals. It worth noting that also the physical-chemical properties of the intergranular interfaces, as well as the presence of micro-imperfections within the microstructure, have to be taken into account, as they may have to a strong influence on onset and evolution of damage

    Morphing technology for gust alleviation: an UAS application

    Get PDF
    Atmospheric turbulence can significantly affect aircraft missions in terms of aerodynamic loads and vibration. These effects are particularly meaningful for MALE-HALE UAS because of their high aspect ratios and because of their low speed, sometimes comparable with that of the gust itself. Many studies have been conducted to reach the goal of efficient gust alleviation. A viable solution appears the application of morphing technology. However, the design of morphing aircraft is a strongly multidisciplinary effort involving different expertise from structures to aerodynamics and flight control. In this study, a multidisciplinary wing-and-tail morphing strategy is proposed for attaining gust attenuation in UAVs. The strategy is based on the combined use of: i) an automatic detection system that identifies gust direction and entity and ii) an aeroelastic model stemming from the coupling between a high-order structural model that is able to resolve the motion and the strain and stress distributions of wings with complex internal structures and a Vortex Lattice Method (VLM) model that accounts for the aerodynamics of the wing-tail system. The gust alleviation strategy employs the information from the detection system and the aeroelastic model to determine the modifications of the wing and the tail surfaces aimed at contrasting wind effects, reducing induced loads and flight path errors. Numerical results are presented to assess the capability of the framework

    Core-Shell Charge Transfer in Plasmonic Fe@Ag Nanoparticles on MgO Film

    Get PDF
    In this work we report the interfacial charge transfer between the Fe core and Ag shell in self-organized nanoparticles on MgO films on Mo(001). Predeposited Fe nanoparticles organize in a square network with long-range order on the oxide surface guided by the MgO coincidence lattice. When Ag is added, it covers the Fe nanoparticles, forming a shell. By means of XPS and UPS we show that a charge transfer occurs between the Fe core and the Ag shell, determining the oxidation of part of the Fe atoms and a negative charging of the Ag shell. This is confirmed by band bending and core level shifts. As a consequence of the Fe@Ag morphology and composition the plasmonic response of the nanoparticles is modified with respect to pure Ag nanoparticles

    Semilinear evolution equations in abstract spaces and applications

    Get PDF
    The existence of mild solutions is obtained, for a semilinear multivalued equation in a reflexive Banach space. Weakly compact valued nonlinear terms are considered, combined with strongly continuous evolution operators generated by the linear part. A continuation principle or a fixed point theorem are used, according to the various regularity and growth conditions assumed. Applications to the study of parabolic and hyperbolic partial differential equations are given
    corecore