6,195 research outputs found

    Diffuse emission in the presence of inhomogeneous spin-orbit interaction for the purpose of spin filtration

    Full text link
    A lateral interface connecting two regions with different strengths of the Bychkov-Rashba spin-orbit interaction can be used as a spin polarizer of electrons in two dimensional semiconductor heterostructures. [Khodas \emph{et al.}, Phys. Rev. Lett. \textbf{92}, 086602 (2004)]. In this paper we consider the case when one of the two regions is ballistic, while the other one is diffusive. We generalize the technique developed for the solution of the problem of the diffuse emission to the case of the spin dependent scattering at the interface, and determine the distribution of electrons emitted from the diffusive region. It is shown that the diffuse emission is an effective way to get electrons propagating at small angles to the interface that are most appropriate for the spin filtration and a subsequent spin manipulation. Finally, a scheme is proposed of a spin filter device, see Fig. 9, that creates two almost fully spin-polarized beams of electrons.Comment: 11 pages, 9 figure

    Orbital magnetoelectric coupling in band insulators

    Full text link
    Magnetoelectric responses are a fundamental characteristic of materials that break time-reversal and inversion symmetries (notably multiferroics) and, remarkably, of "topological insulators" in which those symmetries are unbroken. Previous work has shown how to compute spin and lattice contributions to the magnetoelectric tensor. Here we solve the problem of orbital contributions by computing the frozen-lattice electronic polarization induced by a magnetic field. One part of this response (the "Chern-Simons term") can appear even in time-reversal-symmetric materials and has been previously shown to be quantized in topological insulators. In general materials there are additional orbital contributions to all parts of the magnetoelectric tensor; these vanish in topological insulators by symmetry and also vanish in several simplified models without time-reversal and inversion those magnetoelectric couplings were studied before. We give two derivations of the response formula, one based on a uniform magnetic field and one based on extrapolation of a long-wavelength magnetic field, and discuss some of the consequences of this formula.Comment: 13 page

    High field transport in strained Si/GeSi double heterostructure: a Fokker-Planck approach

    Full text link
    We report calculations of high electric field transport for the case of a strained Si/GeSi double heterostructure (DHS) considering transport along the Si channel and by applying the analytical Fokker-Planck approach (FPA), where the process is modeled as drift-diffusion in energy space. We limit ourselves to electronic transport in the conduction band of the strained Si, where an energy shift between the otherwise degenerate six energy valleys characterizes the band alingment in the DHS. Intervalley phonon scatterings are considered while intravalley acoustic phonon scattering is ignored, leading to results valid for high enough temperatures. Our results are compared to previous theoretical works where Monte Carlo simulations were applied. A reasonable agreement between the two approaches is obtained in the high electric field regime.Comment: 8 pages, 3 figure

    Giant isotope effect in the incoherent tunneling specific heat of the molecular nanomagnet Fe8

    Get PDF
    Time-dependent specific heat experiments on the molecular nanomagnet Fe8 and the isotopic enriched analogue 57Fe8 are presented. The inclusion of the 57Fe nuclear spins leads to a huge enhancement of the specific heat below 1 K, ascribed to a strong increase in the spin-lattice relaxation rate Gamma arising from incoherent, nuclear-spin-mediated magnetic quantum tunneling in the ground-doublet. Since Gamma is found comparable to the expected tunneling rate, the latter process has to be inelastic. A model for the coupling of the tunneling levels to the lattice is presented. Under transverse field, a crossover from nuclear-spin-mediated to phonon-induced tunneling is observed.Comment: Replaced with version accepted for publication in Physical Review Letter

    Nonlinear I-V Characteristics of a Mesoscopic Conductor

    Get PDF
    We present a general theoretical formulation, based on nonequilibrium Green's functions, for nonlinear DC transport in multi-probe mesoscopic conductors. The theory is gauge invariant and is useful for the predictions of current-voltage characteristics and the nonequilibrium charge pile-ups inside the conductor. We have provided a detailed comparison between the gauge invariant scattering matrix theory and our theory. We have also given several examples where the I-V curve can be obtained analytically. The effects of exchange and correlation have been considered explicitly

    Quantum dot dephasing by edge states

    Full text link
    We calculate the dephasing rate of an electron state in a pinched quantum dot, due to Coulomb interactions between the electron in the dot and electrons in a nearby voltage biased ballistic nanostructure. The dephasing is caused by nonequilibrium time fluctuations of the electron density in the nanostructure, which create random electric fields in the dot. As a result, the electron level in the dot fluctuates in time, and the coherent part of the resonant transmission through the dot is suppressed

    Acoustoelectric current and pumping in a ballistic quantum point contact

    Full text link
    The acoustoelectric current induced by a surface acoustic wave (SAW) in a ballistic quantum point contact is considered using a quantum approach. We find that the current is of the "pumping" type and is not related to drag, i.e. to the momentum transfer from the wave to the electron gas. At gate voltages corresponding to the plateaus of the quantized conductance the current is small. It is peaked at the conductance step voltages. The peak current oscillates and decays with increasing SAW wavenumber for short wavelengths. These results contradict previous calculations, based on the classical Boltzmann equation.Comment: 4 pages, 1 figur

    Calorimetry of gamma-ray bursts: echos in gravitational waves

    Get PDF
    Black holes surrounded by a disk or torus may drive the enigmatic cosmological gamma-ray bursts (GRBs). Equivalence in poloidal topology to pulsar magnetospheres shows a high incidence of the black hole-luminosity LHL_H into the surrounding magnetized matter. We argue that this emission is re-radiated into gravitational waves at LGW≃LH/3L_{GW}\simeq L_H/3 in frequencies of order 1kHz, winds and, potentially, MeV neutrinos. The total energy budget and input to the GRB from baryon poor jets are expected to be standard in this scenario, consistent with recent analysis of afterglow data. Collimation of these outflows by baryon rich disk or torus winds may account for the observed spread in opening angles up to about 35o35^o. This model may be tested by future LIGO/VIRGO observations.Comment: To appear in ApJ

    Landauer Conductance of Luttinger Liquids with Leads

    Full text link
    We show that the dc conductance of a quantum wire containing a Luttinger liquid and attached to non-interacting leads is given by e2/he^2/h per spin orientation, regardless of the interactions in the wire. This explains the recent observations of the absence of conductance renormalization in long high-mobility GaAsGaAs wires by Tarucha, Honda and Saku (Solid State Communications {\bf 94}, 413 (1995)).Comment: 4 two-column pages, RevTeX + 1 uuencoded figure

    Classical properties of low-dimensional conductors: Giant capacitance and non-Ohmic potential drop

    Full text link
    Electrical field arising around an inhomogeneous conductor when an electrical current passes through it is not screened, as distinct from 3D conductors, in low-dimensional conductors. As a result, the electrical field depends on the global distribution of the conductivity sigma(x) rather than on the local value of it, inhomogeneities of sigma(x) produce giant capacitances C(omega) that show frequency dependence at relatively low omega, and electrical fields develop in vast regions around the inhomogeneities of sigma(x). A theory of these phenomena is presented for 2D conductors.Comment: 5 pages, two-column REVTeX, to be published in Physical Review Letter
    • …
    corecore