39 research outputs found
Allowable Bearing Capacity for Shallow Foundation in Eket Local Government Area, Akwa Ibom State, Southern Nigeria
P-wave and S-wave velocities were obtained from seismic refraction survey in the foundation layer of Eket, the study area. The Tezcan’s approach discussed extensively in the work was used in conjunction with the existing mathematical relations between elastic parameters and seismic refraction velocities for the study of foundation layers in the study area. Based on the results, the elastic constants, allowable bearing pressure/capacity, ultimate bearing capacity and other parameters in Table 1 were determined. The result shows that allowable bearing pressure increases with increase in shear
modulus and shear wave velocity. The empirical relation between allowable bearing capacity and shear modulus shows that the allowable bearing capacity increases with depth. Comparing our findings with some ranges of safe allowable bearing capacities of similar non cohesive/granular soils in literatures, the second layer with allowable bearing capacity range of 72.56 - 206.63 kN·m−2 (average = 154.78 kN·m−2) has been considered to be the safe shallow engineering foundation in the study area. The empirical relations between allowable bearing capacities shear modulus and shear wave velocity, in conjunction with the inferred maps, which serve as our findings, will be used as guide in the location of foundations. The inferred ultimate and allowable capacities correlate maximally for the two shallow foundations
penetrated by the seismic waves. This perfect correlation reflects the uniqueness of the method
A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks
The 5G networks have the capability to provide high compatibility for the new
applications, industries, and business models. These networks can tremendously
improve the quality of life by enabling various use cases that require high
data-rate, low latency, and continuous connectivity for applications pertaining
to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of
Things (IoT). However, these applications need secure servicing as well as
resource policing for effective network formations. There have been a lot of
studies, which emphasized the security aspects of 5G networks while focusing
only on the adaptability features of these networks. However, there is a gap in
the literature which particularly needs to follow recent computing paradigms as
alternative mechanisms for the enhancement of security. To cover this, a
detailed description of the security for the 5G networks is presented in this
article along with the discussions on the evolution of osmotic and catalytic
computing-based security modules. The taxonomy on the basis of security
requirements is presented, which also includes the comparison of the existing
state-of-the-art solutions. This article also provides a security model,
"CATMOSIS", which idealizes the incorporation of security features on the basis
of catalytic and osmotic computing in the 5G networks. Finally, various
security challenges and open issues are discussed to emphasize the works to
follow in this direction of research.Comment: 34 pages, 7 tables, 7 figures, Published In 5G Enabled Secure
Wireless Networks, pp. 69-102. Springer, Cham, 201