3,082 research outputs found
Linear-quadratic stochastic differential games for distributed parameter systems
A linear-quadratic differential game with infinite dimensional state space is considered. The system state is affected by disturbance and both players have access to different measurements. Optimal linear strategies for the pursuer and the evader, when they exist, are explicitly determined
Photon Structure and Quantum Fluctuation
Photon structure derives from quantum fluctuation in quantum field theory to
fermion and anti-fermion, and has been an experimentally established feature of
electrodynamics since the discovery of the positron. In hadronic physics, the
observation of factorisable photon structure is similarly a fundamental test of
the quantum field theory Quantum Chromodynamics (QCD). An overview of
measurements of hadronic photon structure in e+e- and ep interactions is
presented, and comparison made with theoretical expectation, drawing on the
essential features of photon fluctuation into quark and anti-quark in QCD.Comment: 29 pages, 15 figures, to appear in Philosophical Transactions of the
Royal Society of London (Series A: Mathematical, Physical and Engineering
Sciences
A New 5 Flavour NLO Analysis and Parametrizations of Parton Distributions of the Real Photon
New, radiatively generated, NLO quark (u,d,s,c,b) and gluon densities in a
real, unpolarized photon are presented. We perform three global fits, based on
the NLO DGLAP evolution equations for Q^2>1 GeV^2, to all the available
structure function F_2^gamma(x,Q^2) data. As in our previous LO analysis we
utilize two theoretical approaches. Two models, denoted as FFNS_{CJK}1 & 2 NLO,
adopt the so-called Fixed Flavour-Number Scheme for calculation of the
heavy-quark contributions to F_2^gamma(x,Q^2), the CJK NLO model applies the
ACOT(chi) scheme. We examine the results of our fits by a comparison with the
LEP data for the Q^2 dependence of the F_2^gamma, averaged over various
x-regions, and the F_2,c^gamma. Grid parametrizations of the parton densities
for all fits are provided.Comment: 49 pages, 27 postscript figures; FORTRAN programs available at
http://www.fuw.edu.pl/~pjank/param.htm
Clocking hadronization in relativistic heavy ion collisions with balance functions
A novel state of matter has been hypothesized to exist during the early stage
of relativistic heavy ion collisions, with normal hadrons not appearing until
several fm/c after the start of the reaction. To test this hypothesis,
correlations between charges and their associated anticharges are evaluated
with the use of balance functions. It is shown that late-stage hadronization is
characterized by tightly correlated charge/anticharge pairs when measured as a
function of relative rapidity.Comment: 5 pages, 3 figure
Ab initio prediction of Boron compounds arising from Borozene: Structural and electronic properties
Structure and electronic properties of two unusual boron clusters obtained by
fusion of borozene rings has been studied by means of first principles
calculations, based on the generalized-gradient approximation of the density
functional theory, and the semiempirical tight-binding method was used for the
transport calculations. The role of disorder has also been considered with
single vacancies and substitutional atoms. Results show that the pure boron
clusters are topologically planar and characterized by (3c-2e) bonds, which can
explain, together with the aromaticity (estimated by means of NICS), the
remarkable cohesive energy values obtained. Such feature makes these systems
competitive with the most stable boron clusters to date. On the contrary, the
introduction of impurities compromises stability and planarity in both cases.
The energy gap values indicate that these clusters possess a semiconducting
character, while when the larger system is considered, zero-values of the
density of states are found exclusively within the HOMO-LUMO gap. Electron
transport calculations within the Landauer formalism confirm these indications,
showing semiconductor-like low bias differential conductance for these
stuctures. Differences and similarities with Carbon clusters are highlighted in
the discussion.Comment: 10 pages, 2 tables, 5 figure
Integral correlation measures for multiparticle physics
We report on a considerable improvement in the technique of measuring
multiparticle correlations via integrals over correlation functions. A
modification of measures used in the characterization of chaotic dynamical
sytems permits fast and flexible calculation of factorial moments and cumulants
as well as their differential versions. Higher order correlation integral
measurements even of large multiplicity events such as encountered in heavy ion
collisons are now feasible. The change from ``ordinary'' to ``factorial''
powers may have important consequences in other fields such as the study of
galaxy correlations and Bose-Einstein interferometry.Comment: 23 pages, 6 tar-compressed uuencoded PostScript figures appended,
preprint TPR-92-4
mixing and the next-to-leading-order power correction
The next-to-leading-order power correction for and
form factors are evaluated and employed to explore the
mixing. The parameters of the two mixing angle scheme are
extracted from the data for form factors, two photon decay widths and radiative
decays. The analysis gives the result:
, where
and are the decay constants and the mixing
angles for the singlet (octet) state. In addition, we arrive at a stringent
range for MeV MeV.Comment: 23 pages, 9 figures, To be publshied in Phys. Rev.
Effect of Chaotic Noise on Multistable Systems
In a recent letter [Phys.Rev.Lett. {\bf 30}, 3269 (1995), chao-dyn/9510011],
we reported that a macroscopic chaotic determinism emerges in a multistable
system: the unidirectional motion of a dissipative particle subject to an
apparently symmetric chaotic noise occurs even if the particle is in a
spatially symmetric potential. In this paper, we study the global dynamics of a
dissipative particle by investigating the barrier crossing probability of the
particle between two basins of the multistable potential. We derive
analytically an expression of the barrier crossing probability of the particle
subject to a chaotic noise generated by a general piecewise linear map. We also
show that the obtained analytical barrier crossing probability is applicable to
a chaotic noise generated not only by a piecewise linear map with a uniform
invariant density but also by a non-piecewise linear map with non-uniform
invariant density. We claim, from the viewpoint of the noise induced motion in
a multistable system, that chaotic noise is a first realization of the effect
of {\em dynamical asymmetry} of general noise which induces the symmetry
breaking dynamics.Comment: 14 pages, 9 figures, to appear in Phys.Rev.
- âŠ