10,604 research outputs found

    Winds from accretion disks driven by the radiation and magnetocentrifugal force

    Full text link
    We study the 2-D, time-dependent hydrodynamics of radiation-driven winds from luminous accretion disks threaded by a strong, large-scale, ordered magnetic field. The radiation force is due to spectral lines and is calculated using a generalized multidimensional formulation of the Sobolev approximation. The effects of the magnetic field are approximated by adding a force that emulates a magnetocentrifugal force. Our approach allows us to calculate disk winds when the magnetic field controls the flow geometry, forces the flow to corotate with the disk, or both. In particular, we calculate models where the lines of the poloidal component of the field are straight and inclined to the disk at a fixed angle. Our numerical calculations show that flows which corotate with the disk have a larger mass loss rate than their counterparts which conserve specific angular momentum. The difference in the mass loss rate between these two types of winds can be several orders of magnitude for low disk luminosities but vanishes for high disk luminosities. Winds which corotate with the disk have much higher velocities than angular momentum conserving winds. Fixing the wind geometry stabilizes winds which are unsteady when the geometry is derived self-consistently. The inclination angle between the poloidal velocity and the normal to the disk midplane is important. Non-zero inclination angles allow the magnetocentrifugal force to increase the mass loss rate for low luminosities, and increase the wind velocity for all luminosities. Our calculations also show that the radiation force can launch winds from magnetized disks. The line force can be essential in producing MHD winds from disks where the thermal energy is too low to launch winds or where the field lines make an angle of < 30^o with respect to the normal to the disk.Comment: LaTeX, 11 pages, 6 color postscript or PJEG files, to appear in Ap

    Experimental observation of the crystallization of a paired holon state

    Full text link
    A new excitation is observed at 201 meV in the doped-hole ladder cuprate Sr14_{14}Cu24_{24}O41_{41}, using ultraviolet resonance Raman scattering with incident light at 3.7 eV polarized along the direction of the rungs. The excitation is found to be of charge nature, with a temperature independent excitation energy, and can be understood via an intra-ladder pair-breaking process. The intensity tracks closely the order parameter of the charge density wave in the ladder (CDWL_L), but persists above the CDWL_L transition temperature (TCDWLT_{CDW_L}), indicating a strong local pairing above TCDWLT_{CDW_L}. The 201 meV excitation vanishes in La6_{6}Ca8_{8}Cu24_{24}O41+δ_{41+\delta}, and La5_{5}Ca9_{9}Cu24_{24}O41_{41} which are samples with no holes in the ladders. Our results suggest that the doped holes in the ladder are composite bosons consisting of paired holons that order below TCDWT_{CDW}.Comment: Accepted for publication in Physical Review Letters (4 figures

    Observation of huge thermal spin currents in magnetic multilayers

    Get PDF
    Thermal spin pumping constitutes a novel mechanism for generation of spin currents; however their weak intensity constitutes a major roadblock for its usefulness. We report a phenomenon that produces a huge spin current in the central region of a multilayer system, resulting in a giant spin Seebeck effect in a structure formed by repetition of ferromagnet/metal bilayers. The result is a consequence of the interconversion of magnon and electron spin currents at the multiple interfaces. This work opens the possibility to design thin film heterostructures that may boost the application of thermal spin currents in spintronics

    Flow profiling of a surface acoustic wave nanopump

    Get PDF
    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing Surface Acoustic Waves is investigated both experimentally and theoretically. Such ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate an internal streaming within the fluid. Such acoustic streaming can be used for controlled agitation during, e.g., microarray hybridization. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power somewhat weaker than linearly and to decrease fast with the distance from the ultrasound generator on the chip.Comment: 12 pages 20 figure

    Cohomogeneity one manifolds and selfmaps of nontrivial degree

    Full text link
    We construct natural selfmaps of compact cohomgeneity one manifolds with finite Weyl group and compute their degrees and Lefschetz numbers. On manifolds with simple cohomology rings this yields in certain cases relations between the order of the Weyl group and the Euler characteristic of a principal orbit. We apply our construction to the compact Lie group SU(3) where we extend identity and transposition to an infinite family of selfmaps of every odd degree. The compositions of these selfmaps with the power maps realize all possible degrees of selfmaps of SU(3).Comment: v2, v3: minor improvement

    Turbulent Origin of the Galactic-Center Magnetic Field: Nonthermal Radio Filaments

    Full text link
    A great deal of study has been carried out over the last twenty years on the origin of the magnetic activity in the Galactic center. One of the most popular hypotheses assumes milli-Gauss magnetic field with poloidal geometry, pervading the inner few hundred parsecs of the Galactic-center region. However, there is a growing observational evidence for the large-scale distribution of a much weaker field of B \lesssim 10 micro G in this region. Here, we propose that the Galactic-center magnetic field originates from turbulent activity that is known to be extreme in the central hundred parsecs. In this picture the spatial distribution of the magnetic field energy is highly intermittent, and the regions of strong field have filamentary structures. We propose that the observed nonthermal radio filaments appear in (or, possibly, may be identified with) such strongly magnetized regions. At the same time, the large-scale diffuse magnetic field is weak. Both results of our model can explain the magnetic field measurements of the the Galactic-center region. In addition, we discuss the role of ionized outflow from stellar clusters in producing the long magnetized filaments perpendicular to the Galactic plane.Comment: 11 pages, accepted to ApJ Letter

    An Experimental Study on Relationship Between Intellectual Concentration and Personal Mental Characteristics

    Get PDF
    1st International Conference on Human Systems Engineering and Design (IHSED2018): Future Trends and Applications, October 25-27, 2018, CHU-Université de Reims Champagne-Ardenne, France.As a proposal of new diagnosis for mental diseases, this study focused on the relationship between intellectual concentration and personal mental characteristics. It is expected that the measurement of concentration characteristics may help the diagnosis of the mental disorders because the mental characteristics such as psychiatric disease, developmental disorder and behavioral feature are supposed to be closely related to their mental activity such as concentration. When analyzing the relationship, the characteristics of concentration are expressed as 36 feature values by analyzing answering time distribution of cognitive task, and the values of concentration were compressed to 5 main factors by principal component analysis. Then the combination of the factors and one of 36 parameters of mental characteristics were given to a decision tree analysis tool
    corecore