25 research outputs found

    Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry

    Get PDF
    We demonstrate successful “dry” refrigeration of quantum fluids down to T = 0.16 mK by using copper nuclear demagnetization stage that is pre-cooled by a pulse-tube-based dilution refrigerator. This type of refrigeration delivers a flexible and simple sub-mK solution to a variety of needs including experiments with superfluid 3He. Our central design principle was to eliminate relative vibrations between the high-field magnet and the nuclear refrigeration stage, which resulted in the minimum heat leak of Q = 4.4 nW obtained in field of 35 mT. For thermometry, we employed a quartz tuning fork immersed into liquid 3He. We show that the fork oscillator can be considered as self-calibrating in superfluid 3He at the crossover point from hydrodynamic into ballistic quasiparticle regime.Peer reviewe

    Melting curve of 4^4He: no sign of the supersolid transition down to 10 mK

    Full text link
    We have measured the melting curve of 4^4He in the temperature range from 10 to 400 mK with the accuracy of about 0.5 μ\mubar. Crystals of different quality show the expected T4T^4-dependence in the range from 80 to 400 mK without any sign of the supersolid transition, and the coefficient is in excellent agreement with available data on the sound velocity in liquid 4^4He and on the Debye temperature of solid 4^4He. Below 80 mK we have observed a small deviation from T4T^4-dependence which however cannot be attributed to the supersolid transition because instead of decrease the entropy of the solid rather remains constant, about 2.5×1062.5\times10^{-6} RRComment: 4 pages, 2 figures, published in Physical Review Letter

    Quantum degeneracy in mesoscopic matter: Casimir effect and Bose-Einstein condensation

    Full text link
    The ground-state phonon pressure is an analogue to the famous Casimir pressure of vacuum produced by zero-point photons. The acoustic Casimir forces are, however, many orders of magnitude weaker than the electromagnetic Casimir forces, as the typical speed of sound is 100 000 times smaller than the speed of light. Because of its weakness, zero-point acoustic Casimir pressure was never observed, although the pressure of artificially introduced sound noise on a narrow aperture has been reported. However, the magnitude of Casimir pressure increases as 1/L31/L^3 with the decrease of the sample size LL, and reaches picoNewtons in the sub-micron scales. We demonstrate and measure the acoustic Casimir pressure induced by zero-point phonons in solid helium adsorbed on a carbon nanotube. We have also observed Casimir-like "pushing out" thermal phonons with the decreasing temperature or the length. We also show that all thermodynamic quantities are size-dependent, and therefore in the mesoscopic range Lc/(kBT)L\lesssim\hbar{c}/(k_BT) quadruple points are possible on the phase diagram where four different phases coexist. Due to the smallness of solid helium sample, temperature of Bose-Einstein condensation (BEC) of vacancies is relatively high, 1010010-100 mK. This allowed us to experimentally discover the BEC in a system of zero-point vacancies, predicted more than 50 years ago

    Solid 4He and the Supersolid Phase: from Theoretical Speculation to the Discovery of a New State of Matter? A Review of the Past and Present Status of Research

    Full text link
    The possibility of a supersolid state of matter, i.e., a crystalline solid exhibiting superfluid properties, first appeared in theoretical studies about forty years ago. After a long period of little interest due to the lack of experimental evidence, it has attracted strong experimental and theoretical attention in the last few years since Kim and Chan (Penn State, USA) reported evidence for nonclassical rotational inertia effects, a typical signature of superfluidity, in samples of solid 4He. Since this "first observation", other experimental groups have observed such effects in the response to the rotation of samples of crystalline helium, and it has become clear that the response of the solid is extremely sensitive to growth conditions, annealing processes, and 3He impurities. A peak in the specific heat in the same range of temperatures has been reported as well as anomalies in the elastic behaviour of solid 4He with a strong resemblance to the phenomena revealed by torsional oscillator experiments. Very recently, the observation of unusual mass transport in hcp solid 4He has also been reported, suggesting superflow. From the theoretical point of view, powerful simulation methods have been used to study solid 4He, but the interpretation of the data is still rather difficult; dealing with the question of supersolidity means that one has to face not only the problem of the coexistence of quantum coherence phenomena and crystalline order, exploring the realm of spontaneous symmetry breaking and quantum field theory, but also the problem of the role of disorder, i.e., how defects, such as vacancies, impurities, dislocations, and grain boundaries, participate in the phase transition mechanism.Comment: Published on J. Phys. Soc. Jpn., Vol.77, No.11, p.11101

    Defects and glassy dynamics in solid He-4: Perspectives and current status

    Full text link
    We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.Comment: 33 pages, 13 figure

    Faceting on 3He crystals

    Full text link

    Quartz tuning fork as a probe of surface oscillations

    Full text link
    Quartz tuning forks are high-quality mechanical oscillators widely used in low temperature physics as viscometers, thermometers, and pressure sensors. We demonstrate that a fork placed in liquid helium near the surface of solid helium is very sensitive to the oscillations of the solid-liquid interface. We developed a double-resonance read-out technique, which allowed us to detect oscillations of the surface with an accuracy of 1 Å in 10 s. Using this technique, we have investigated crystallization waves in 4He down to 10 mK. In contrast to previous studies of crystallization waves, our measurement scheme has very low dissipation, on the order of 20 pW, which allows us to carry out experiments even at sub-mK temperatures. We propose to use this scheme in the search for crystallization waves in 3He, which exist only at temperatures well below 0.5 mK. The suggested technique can also be used for accurate displacement detection in a large variety of systems.Peer reviewe
    corecore