1 research outputs found
Local Versus Global Thermal States: Correlations and the Existence of Local Temperatures
We consider a quantum system consisting of a regular chain of elementary
subsystems with nearest neighbor interactions and assume that the total system
is in a canonical state with temperature . We analyze under what condition
the state factors into a product of canonical density matrices with respect to
groups of subsystems each, and when these groups have the same temperature
. While in classical mechanics the validity of this procedure only depends
on the size of the groups , in quantum mechanics the minimum group size
also depends on the temperature ! As examples, we apply our
analysis to a harmonic chain and different types of Ising spin chains. We
discuss various features that show up due to the characteristics of the models
considered. For the harmonic chain, which successfully describes thermal
properties of insulating solids, our approach gives a first quantitative
estimate of the minimal length scale on which temperature can exist: This
length scale is found to be constant for temperatures above the Debye
temperature and proportional to below.Comment: 12 pages, 5 figures, discussion of results extended, accepted for
publication in Phys. Rev.