523 research outputs found
Diffuse transport and spin accumulation in a Rashba two-dimensional electron gas
The Rashba Hamiltonian describes the splitting of the conduction band as a
result of spin-orbit coupling in the presence of an asymmetric confinement
potential and is commonly used to model the electronic structure of confined
narrow-gap semiconductors. Due to the mixing of spin states some care has to be
exercised in the calculation of transport properties. We derive the diffusive
conductance tensor for a disordered two-dimensional electron gas with
spin-orbit interaction and show that the applied bias induces a spin
accumulation, but that the electric current is not spin-polarized.Comment: REVTeX4 format, 5 page
Critical properties of S=1/2 Heisenberg ladders in magnetic fields
The critical properties of the Heisenberg two-leg ladders are
investigated in a magnetic field. Combining the exact diagonalization method
and the finite-size-scaling analysis based on conformal field theory, we
calculate the critical exponents of spin correlation functions numerically. For
a strong interchain coupling, magnetization dependence of the critical
exponents shows characteristic behavior depending on the sign of the interchain
coupling. We also calculate the critical exponents for the Heisenberg
two-leg ladder with a diagonal interaction, which is thought as a model
Hamiltonian of the organic spin ladder compound
. Numerical results are compared with
experimental results of temperature dependence of the NMR relaxation rate
.Comment: REVTeX, 10 pages, 8 figures, accepted for Phys. Rev.
Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires
We present numerical calculations of the ballistic spin-transport properties
of quasi-one-dimensional wires in the presence of the spin-orbit (Rashba)
interaction. A tight-binding analog of the Rashba Hamiltonian which models the
Rashba effect is used. By varying the robustness of the Rashba coupling and the
width of the wire, weak and strong coupling regimes are identified. Perfect
electron spin-modulation is found for the former regime, regardless of the
incident Fermi energy and mode number. In the latter however, the
spin-conductance has a strong energy dependence due to a nontrivial subband
intermixing induced by the strong Rashba coupling. This would imply a strong
suppression of the spin-modulation at higher temperatures and source-drain
voltages. The results may be of relevance for the implementation of
quasi-one-dimensional spin transistor devices.Comment: 19 pages (incl. 9 figures). To be published in PR
Spin-drift transport and its applications
We study the generation of non-equilibrium spin currents in systems with
spatially-inhomogeneous magnetic potentials. For sufficiently high current
densities, the spin polarization can be transported over distances
significantly exceeding the intrinsic spin-diffusion length. This enables
applications that are impossible within the conventional spin-diffusion regime.
Specifically, we propose dc measurement schemes for the carrier spin relaxation
times, and , as well as demonstrate the possibility of spin species
separation by driving current through a region with an inhomogeneous magnetic
potential.Comment: 4 pages, 2 eps figure
Design Considerations for an Upgraded Track-Finding Processor in the Level-1 Endcap Muon Trigger of CMS for SLHC operations
The conceptual design for a Level-1 muon track-finder trigger for the CMS endcap muon system is proposed that can accommodate the increased particle occupancy and system constraints of the proposed SLHC accelerator upgrade and the CMS detector upgrades. A brief review of the architecture of the current track-finder for LHC trigger operation is given, with potential bottlenecks indicated for SLHC operation. The upgraded track-finding processors described here would receive as many as two track segments detected from every cathode strip chamber comprising the endcap muon system, up to a total of 18 per 60° azimuthal sector. This would dramatically improve the efficiency of the track reconstruction in a high occupancy environment over the current design. However, such an improvement would require significantly higher bandwidth and logic resources. We propose to use the fastest available serial links, running asynchronously to the machine clock to use their full bandwidth. The work of creating a firmware model for the upgraded Sector Processor is in progress; details of its implementation will be discussed. Another enhancement critical for the overall Level-1 trigger capability for physics studies in phase 2 of the SLHC is to include the inner silicon tracking systems into the design of the Level-1 trigger
Field-Induced Magnetic Order in Quantum Spin Liquids
We study magnetic field-induced three-dimensional ordering transitions in
low-dimensional quantum spin liquids, such as weakly coupled, antiferromagnetic
spin-1/2 Heisenberg dimers and ladders. Using stochastic series expansion
quantum Monte Carlo simulations, thermodynamic response functions are obtained
down to ultra-low temperatures. We extract the critical scaling exponents which
dictate the power-law dependence of the transition temperature on the applied
magnetic field. These are compared with recent experiments on candidate
materials and with predictions for the Bose-Einstein condensation of magnons
obtained in mean-field theory.Comment: RevTex, 4 pages with 5 figure
The Magnetic Spin Ladder (C_{5}H_{12}N)_{2}CuBr_{4}: High Field Magnetization and Scaling Near Quantum Criticality
The magnetization, T, 0.7 K K), from single
crystals and powder samples of (CHN)CuBr has been used
to identify this system as an Heisenberg two-leg ladder in the strong
coupling limit, K and K, with T and T. An inflection point in K) at
half-saturation, , is described by an effective \emph{XXZ} chain. The
data exhibit universal scaling behavior in the vicinity of and
, indicating the system is near a quantum critical point.Comment: 4 pages, 4 figure
Coupled Ladders in a Magnetic Field
We investigate the phase transitions in two-leg ladders systems in the
incommensurate phase, for which the gap is destroyed by a magnetic field
() and the ladder is not yet totally saturated (). We
compute quantitatively the correlation functions as a function of the magnetic
field for an isolated strong coupling ladder and use
it to study the phase transition occuring in a three dimensional array of
antiferromagnetically coupled ladders. The three dimensional ordering is in the
universality class of Bose condensation of hard core bosons. We compute the
critical temperature as well as various physical quantities such as
the NMR relaxations rate. has an unusual camel-like shape with a local
minimum at and behaves as for
. We discuss the experimental consequences for compounds such as
Cu_2(C_5H_{12}N_2)_2Cl_4Comment: 11 pages; some misprints corrected + one reference added; to appear
in PR
Turning round the telescope. Centre-right parties and immigration and integration policy in Europe
This is an Author's Original Manuscript of 'Turning round the telescope. Centre-right parties and immigration and integration policy in Europe', whose final and definitive form, the Version of Record, has been published in the Journal of European Public Policy 15(3):315-330, 2008 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/doi.org/10.1080/13501760701847341
Spin Orientation and Spin Precession in Inversion-Asymmetric Quasi Two-Dimensional Electron Systems
Inversion asymmetry induced spin splitting of the electron states in quasi
two-dimensional (2D) systems can be attributed to an effective magnetic field B
which varies in magnitude and orientation as a function of the in-plane wave
vector k||. Using a realistic 8x8 Kane model that fully takes into account spin
splitting because of both bulk inversion asymmetry and structure inversion
asymmetry we investigate the spin orientation and the effective field B for
different configurations of a quasi 2D electron system. It is shown that these
quantities depend sensitively on the crystallographic direction in which the
quasi 2D system was grown as well as on the magnitude and orientation of the
in-plane wave vector k||. These results are used to discuss how spin-polarized
electrons can precess in the field B(k||). As a specific example we consider
GaInAs-InP quantum wells.Comment: 10 pages, 6 figure
- âŠ