6,284 research outputs found

    On decays of Z' into unparticle stuff

    Get PDF
    We study the decay of a Z' - boson into U -unparticle and a photon. The extended Landau-Yang theorem is used. The clear photon signal would make the decay Z' \rightarrow \gamma U as an additional contribution mode for study of unparticle physics.Comment: 11 pages, 3 figures, paper accepted for publication by Advances in High Energy Physics journa

    Dark matter component decaying after recombination: lensing constraints with Planck data

    Full text link
    It has been recently suggested~\cite{Berezhiani:2015yta} that emerging tension between cosmological parameter values derived in high-redshift (CMB anisotropy) and low-redshift (cluster counts, Hubble constant) measurements can be reconciled in a model which contains subdominant fraction of dark matter decaying after recombination. We check the model against the CMB Planck data. We find that lensing of the CMB anisotropies by the large-scale structure gives strong extra constraints on this model, limiting the fraction as F<8%F<8\% at 2\,σ\sigma confidence level. However, investigating the combined data set of CMB and conflicting low-zz measurements, we obtain that the model with F2 ⁣ ⁣5F\approx2\!-\!5\% exhibits better fit (by 1.5-3\,σ\sigma depending on the lensing priors) compared to that of the concordance Λ\LambdaCDM cosmological model.Comment: 5 pages, 4 figures; v2: journal version, pages++, figures+

    Hidden supersymmetry and Berezin quantization of N=2, D=3 spinning superparticles

    Full text link
    The first quantized theory of N=2, D=3 massive superparticles with arbitrary fixed central charge and (half)integer or fractional superspin is constructed. The quantum states are realized on the fields carrying a finite dimensional, or a unitary infinite dimensional representation of the supergroups OSp(2|2) or SU(1,1|2). The construction originates from quantization of a classical model of the superparticle we suggest. The physical phase space of the classical superparticle is embedded in a symplectic superspace T(R1,2)×L12T^\ast({R}^{1,2})\times{L}^{1|2}, where the inner K\"ahler supermanifold L12=OSp(22)/[U(1)×U(1)]=SU(1,12)/[U(22)×U(1)]{L}^{1|2}=OSp(2|2)/[U(1)\times U(1)]=SU(1,1|2)/[U(2|2)\times U(1)] provides the particle with superspin degrees of freedom. We find the relationship between Hamiltonian generators of the global Poincar\'e supersymmetry and the ``internal'' SU(1,1|2) one. Quantization of the superparticle combines the Berezin quantization on L12{L}^{1|2} and the conventional Dirac quantization with respect to space-time degrees of freedom. Surprisingly, to retain the supersymmetry, quantum corrections are required for the classical N=2 supercharges as compared to the conventional Berezin method. These corrections are derived and the Berezin correspondence principle for L12{L}^{1|2} underlying their origin is verified. The model admits a smooth contraction to the N=1 supersymmetry in the BPS limit.Comment: 43 pages, LaTeX Version 2.0

    Evidence for a connection between the gamma-ray and the highest energy cosmic-ray emissions by BL Lacertae objects

    Get PDF
    A set of potentially gamma-ray--loud BL Lac objects is selected by intersecting the EGRET and BL Lac catalogs. Of the resulting 14 objects, eight are found to correlate with arrival directions of ultra--high-energy cosmic rays (UHECRs), with significance of the order of 5 sigma. This suggests that gamma-ray emission can be used as a distinctive feature of those BL Lac objects that are capable of producing UHECR.Comment: 11 pages, 1 figure, version published in APJ Letter

    Hidden nonlinear supersymmetries in pure parabosonic systems

    Full text link
    The existence of intimate relation between generalized statistics and supersymmetry is established by observation of hidden supersymmetric structure in pure parabosonic systems. This structure is characterized generally by a nonlinear superalgebra. The nonlinear supersymmetry of parabosonic systems may be realized, in turn, by modifying appropriately the usual supersymmetric quantum mechanics. The relation of nonlinear parabosonic supersymmetry to the Calogero-like models with exchange interaction and to the spin chain models with inverse-square interaction is pointed out.Comment: 20 pages, one reference corrected, to appear in Int. J. Mod. Phys.
    corecore