4,567 research outputs found
Internal thermal noise in the LIGO test masses : a direct approach
The internal thermal noise in LIGO's test masses is analyzed by a new
technique, a direct application of the Fluctuation-Dissipation Theorem to
LIGO's readout observable, (longitudinal position of test-mass face,
weighted by laser beam's Gaussian profile). Previous analyses, which relied on
a normal-mode decomposition of the test-mass motion, were valid only if the
dissipation is uniformally distributed over the test-mass interior, and they
converged reliably to a final answer only when the beam size was a
non-negligible fraction of the test-mass cross section. This paper's direct
analysis, by contrast, can handle inhomogeneous dissipation and arbitrary beam
sizes. In the domain of validity of the previous analysis, the two methods give
the same answer for , the spectral density of thermal noise, to within
expected accuracy. The new analysis predicts that thermal noise due to
dissipation concentrated in the test mass's front face (e.g. due to mirror
coating) scales as , by contrast with homogeneous dissipation, which
scales as ( is the beam radius); so surface dissipation could
become significant for small beam sizes.Comment: 6 pages, RevTex, 1 figur
Hyperon production in near threshold nucleon-nucleon collisions
We study the mechanism of the associated Lambda-kaon and Sigma-kaon
production in nucleon-nucleon collisions over an extended range of near
threshold beam energies within an effective Lagrangian model, to understand of
the new data on pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions published
recently by the COSY-11 collaboration. In this theory, the hyperon production
proceeds via the excitation of N*(1650), N*(1710), and N*(1720) baryonic
resonances. Interplay of the relative contributions of various resonances to
the cross sections, is discussed as a function of the beam energy over a larger
near threshold energy domain. Predictions of our model are given for the total
cross sections of pp --> p Sigma+K0, pp --> n Sigma+K+, and pn --> n Lambda K+
reactions.Comment: 16 pages, 4 figures, one new table added and dicussions are updated,
version accepted for publication by Physical Review
Preparing the foundations for video-based, practice-placement support: establishing the role from a studentsâ perspective
Currently, many placement-based health programme students within the UK are supported through face-to-face visits from university staff. Whilst cited in literature as being of value, the face-to-face nature of this contact is not supported. Alternatives including video-based communications methods offer the potential for cost effective, environmentally responsible support. However, in order to establish the fitness for purpose of alternative approaches, the content and purpose of current support needs to be understood. This project aimed to investigate student perceptions of the ideal content and purpose of clinical support visits, and alternatives to the current face-to-face approach. Fifty-six Physiotherapy undergraduate students responded to questionnaires with a further nine participating in a follow-up focus group. Participants emphasised the value of the visit in guiding learning, ensuring progression and resolving arising issues, and highlighted concerns over alternative approaches. Focus group participants discussed the importance of personal and professional confidence in directing requirements for support, and went on to propose a menu of options for methods of communication.Whilst limited in some applications, video technologies may be one of the options. Overall, however, this project supports the need for consideration of individualised learning journeys within curriculum planning
Diagonally Neighbour Transitive Codes and Frequency Permutation Arrays
Constant composition codes have been proposed as suitable coding schemes to
solve the narrow band and impulse noise problems associated with powerline
communication. In particular, a certain class of constant composition codes
called frequency permutation arrays have been suggested as ideal, in some
sense, for these purposes. In this paper we characterise a family of neighbour
transitive codes in Hamming graphs in which frequency permutation arrays play a
central rode. We also classify all the permutation codes generated by groups in
this family
The role of in and reactions
The near threshold meson production in proton-proton and
collisions is studied with the assumption that the production mechanism is due
to the sub--threshold resonance. The , and
-meson exchanges for proton-proton collisions are considered. It is
shown that the contribution to the reaction from the t-channel
meson exchange is dominant. With a significant
coupling ( = 0.13), both and
data are very well reproduced. The significant coupling of
the resonance to is compatible with previous indications
of a large component in the quark wave function of the
resonance and may be the real origin of the significant enhancement of the
production over the naive OZI-rule predictions.Comment: 15 pages, 6 figure
Escaping from nonhyperbolic chaotic attractors
We study the noise-induced escape process from chaotic attractors in
nonhyperbolic systems. We provide a general mechanism of escape in the low
noise limit, employing the theory of large fluctuations. Specifically, this is
achieved by solving the variational equations of the auxiliary Hamiltonian
system and by incorporating the initial conditions on the chaotic attractor
unambiguously. Our results are exemplified with the H{\'e}non and the Ikeda map
and can be implemented straightforwardly to experimental data.Comment: replaced with published versio
Numerical simulation of unconstrained cyclotron resonant maser emission
When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of Auroral Kilometric Radiation (AKR) an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. PiC code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared to waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined radiation emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.Publisher PD
Contribution of -terms to the total interaction cross sections of relativistic elementary atoms with atoms of matter
It is shown that the corrections of order to the total cross
sections for interaction of elementary hydrogen-like atoms with target atoms,
reported in the previously published paper [S.Mrowczynski, Phys.Rev. D36, 1520
(1987)], do not include some terms of the same order of magnitude. That results
in a significant contribution of these corrections in particular cases. The
full -corrections have been derived and it is shown that they are
really small and could be omitted for most practical applications.Comment: 5 page
Clonal interference and Muller's ratchet in spatial habitats
Competition between independently arising beneficial mutations is enhanced in
spatial populations due to the linear rather than exponential growth of clones.
Recent theoretical studies have pointed out that the resulting fitness dynamics
is analogous to a surface growth process, where new layers nucleate and spread
stochastically, leading to the build up of scale-invariant roughness. This
scenario differs qualitatively from the standard view of adaptation in that the
speed of adaptation becomes independent of population size while the fitness
variance does not. Here we exploit recent progress in the understanding of
surface growth processes to obtain precise predictions for the universal,
non-Gaussian shape of the fitness distribution for one-dimensional habitats,
which are verified by simulations. When the mutations are deleterious rather
than beneficial the problem becomes a spatial version of Muller's ratchet. In
contrast to the case of well-mixed populations, the rate of fitness decline
remains finite even in the limit of an infinite habitat, provided the ratio
between the deleterious mutation rate and the square of the
(negative) selection coefficient is sufficiently large. Using again an analogy
to surface growth models we show that the transition between the stationary and
the moving state of the ratchet is governed by directed percolation
- âŠ