327 research outputs found
Optical cavity mode dynamics and coherent phonon generation in high-Q micropillar resonators
International audienceWe study the temporal dynamics of photoexcited carriers in distributed Bragg reflector based semiconductor micropillars at room temperature. Their influence on the process of coherent phonon generation and detection is analyzed by means of pump-probe microscopy. The dependence of the measured mechanical signatures on laser-cavity detuning is explained through a model that accounts for the varying light-cavity coupling existent during the ultrashort times that pump and probe pulses dwell within the structure. To do so, we first explain the optical mode dynamics with an electron-hole diffusion model that accounts for the escape of carriers from the probed area, as well as their recombination in the bulk and on the free surfaces. We thus show that the latter is the most influential factor for pillars below ∼10μm, where 3D confinement of the optical and mechanical fields becomes relevant
Phonon Bloch oscillations in acoustic-cavity structures
We describe a semiconductor multilayer structure based in acoustic phonon
cavities and achievable with MBE technology, designed to display acoustic
phonon Bloch oscillations. We show that forward and backscattering Raman
spectra give a direct measure of the created phononic Wannier-Stark ladder. We
also discuss the use of femtosecond laser impulsions for the generation and
direct probe of the induced phonon Bloch oscillations. We propose a gedanken
experiment based in an integrated phonon source-structure-detector device, and
we present calculations of pump and probe time dependent optical reflectivity
that evidence temporal beatings in agreement with the Wannier-Stark ladder
energy splitting.Comment: PDF file including 4 figure
Uncoupled excitons in semiconductor microcavities detected in resonant Raman scattering
We present an outgoing resonant Raman-scattering study of a GaAs/AlGaAs based microcavity embedded in a p-i-n junction. The p-i-n junction allows the vertical electric field to be varied, permitting control of exciton-photon detuning and quenching of photoluminescence which otherwise obscures the inelastic light scattering signals. Peaks corresponding to the upper and lower polariton branches are observed in the resonant Raman cross sections, along with a third peak at the energy of uncoupled excitons. This third peak, attributed to disorder activated Raman scattering, provides clear evidence for the existence of uncoupled exciton reservoir states in microcavities in the strong-coupling regime
Scaling rules in optomechanical semiconductor micropillars
International audienceSemiconductor pillar microcavities have recently emerged as a promising optomechanical platform in the unprecedented 20-GHz frequency range. Currently established models for the mechanical behavior of micropillars, however, rely on complete numerical simulations or semianalytical approaches, which makes their application to experiments notoriously difficult. Here we overcome this challenge with an effective model by reducing the full, hybridized mechanical mode picture of a micropillar to an approach that captures the observed global trends. We show experimentally the validity of this approach by studying the lateral size dependence of the frequency, amplitude, and lifetime of the mechanical modes of square-section pillar microcavities, using room-temperature pump-probe microscopy. General scaling rules for these quantities are found and explained through simple phenomenological models of the physical phenomena involved. We show that the energy shift ω m of the modes due to confinement is dependent on the inverse of their frequency ω 0 and lateral size L (ω m ∝ 1/ω 0 L 2) and that the mode lifetime τ is linear with pillar size and inversely proportional to their frequency (τ ∝ L/ω 0). The mode amplitude is in turn inversely proportional to the lateral size of the considered resonators. This is related to the dependence of the optomechanical coupling rate (g 0 ∝ 1/L) with the spatial extent of the confined electromagnetic and mechanical fields. Using a numerical model based on the finite-element method, we determine the magnitude and size dependence of g 0 and, by combining the results with the experimental data, we discuss the attainable single-photon cooperativity in these systems. The effective models proposed and the scaling rules found constitute an important tool in micropillar optomechanics and in the future development of more complex micropillar based devices
Magneto-transport study of intra- and intergrain transitions in the magnetic superconductors RuSr2GdCu2O8 and RuSr2(Gd1.5Ce0.5)Cu2O10
A characterization of the magnetic superconductors RuSr2GdCu2O8 [Ru-(1212)]
and RuSr2(Gd1.5Ce0.5)Cu2O10 [Ru-(1222)] through resistance measurements as a
function of temperature and magnetic field is presented. Two peaks in the
derivative of the resistive curves are identified as intra- and intergrain
superconducting transitions. Strong intragrain granularity effects are
observed, and explained by considering the antiphase boundaries between
structural domains of coherently rotated RuO6 octahedra as intragrain
Josephson-junctions. A different field dependence of the intragrain transition
temperature in these compounds was found. For Ru-(1212) it remains unchanged up
to 0.1 T, decreasing for higher fields. In Ru-(1222) it smoothly diminishes
with the increase in field even for a value as low as 100 Oe. These results are
interpreted as a consequence of a spin-flop transition of the Ru moments. The
large separation between the RuO2 layers in Ru-(1222) promotes a weak
interlayer coupling, leading the magnetic transition to occur at lower fields.
The suppression rate of the intragrain transition temperature is about five
times higher for Ru-(1222), a result we relate to an enhancement of the 2D
character of the vortex structure. A distinctive difference with conventional
cuprates is the sharp increase in amplitude of the intergrain peak in both
systems, as the field is raised, which is ascribed to percolation through a
fraction of high quality intergrain junctions.Comment: Submitted for Physical Review
Structural analysis, magnetic and transport properties of the (Ru1-xCox)Sr2GdCu2O8 system
The effects of Co substitution on structural and superconducting properties
of RuSr2GdCu2O8 compound have been studied. Rietveld refinements of the X-ray
diffraction patterns indicate that the cobalt ion progressively replaces
ruthenium sites. This replacement induces significant changes on the crystal
structure and on the magnetic and superconducting properties. The effects Co
substitution on the superconducting behaviour, and more particulary on the
changes induce by the hole doping mechanism, were investigated in
(Ru1-xCox)Sr2GdCu2O8 by a "bond valence sum" analysis with Co content from x=
0.0 to x = 0.2. The weak ferromagnetic transition at Tm= 138.2 K is shifted to
lower temperature, and suppressed at higher Co content. From the
crystallographic point of view the Ru-O(1)-Cu bond angle, associated to the
rotation of the RuO6 octahedra, around the c-axis remain essetially constant
when Ru is substituted by Co. Furthermore, increasing Co content has the effect
to increase the weak ferromagnetic moment, which may be interpreted as the main
responsible for breaking the delicate balance between magnetic and
superconducting ordering.Comment: 21 pages, 8 figure
Hole-doping dependence of percolative phase separation in Pr_(0.5-delta)Ca_(0.2+delta)Sr_(0.3)MnO_(3) around half doping
We address the problem of the percolative phase separation in polycrystalline
samples of PrCaSrMnO for (hole doping between 0.46 and 0.54). We perform
measurements of X-ray diffraction, dc magnetization, ESR, and electrical
resistivity. These samples show at a paramagnetic (PM) to ferromagnetic
(FM) transition, however, we found that for there is a coexistence of
both of these phases below . On lowering below the charge-ordering
(CO) temperature all the samples exhibit a coexistence between the FM
metallic and CO (antiferromagnetic) phases. In the whole range the FM phase
fraction () decreases with increasing . Furthermore, we show that only
for the metallic fraction is above the critical percolation
threshold . As a consequence, these samples show very
different magnetoresistance properties. In addition, for we
observe a percolative metal-insulator transition at , and for
the insulating-like behavior generated by the enlargement of
with increasing is well described by the percolation law , where is a critical exponent. On the basis of
the values obtained for this exponent we discuss different possible percolation
mechanisms, and suggest that a more deep understanding of geometric and
dimensionality effects is needed in phase separated manganites. We present a
complete vs phase diagram showing the magnetic and electric properties
of the studied compound around half doping.Comment: 9 text pages + 12 figures, submitted to Phys. Rev.
Spin Glass Behavior in RuSr2Gd1.5Ce0.5Cu2O10
The dynamics of the magnetic properties of polycrystalline
RuSr2Gd1.5Ce0.5Cu2O10 (Ru-1222) have been studied by ac susceptibility and dc
magnetization measurements, including relaxation and ageing studies. Ru-1222 is
a reported magneto-superconductor with Ru spins magnetic ordering at
temperatures near 100 K and superconductivity in Cu-O2 planes below Tc ~ 40 K.
The exact nature of Ru spins magnetic ordering is still debated and no
conclusion has been reached yet. In this work, a frequency-dependent cusp was
observed in ac susceptibility vs. T measurements, which is interpreted as a
spin glass transition. The change in the cusp position with frequency follows
the Vogel-Fulcher law, which is commonly accepted to describe a spin glass with
magnetically interacting clusters. Such interpretation is supported by
themoremanaent magnetization (TRM) measurements at T = 60 K. TRM relaxations
are well described by a stretched exponential relation, and present significant
ageing effects.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
Ruthenocuprates RuSr2(Eu,Ce)2Cu2O10: Intrinsic magnetic multilayers
We report ac susceptibility data on RuSr_2(Eu,Ce)_2Cu_2O_(10-y) (Ru-1222, Ce
content x=0.5 and 1.0), RuSr_2GdCu_2O_8 (Ru-1212) and SrRuO_3. Both Ru-1222
(x=0.5, 1.0) sample types exhibit unexpected magnetic dynamics in low magnetic
fields: logarithmic time relaxation, switching behavior, and `inverted'
hysteresis loops. Neither Ru-1212 nor SrRuO_3 exhibit such magnetic dynamics.
The results are interpreted as evidence of the complex magnetic order in
Ru-1222. We propose a specific multilayer model to explain the data, and note
that superconductivity in the ruthenocuprate is compatible with both the
presence and absence of the magnetic dynamics.Comment: 9 pages, 11 figures, Revtex; submitted to Phys.Rev.
Antiferromagnetic Order of the Ru and Gd in Superconducting RuSr2GdCu2O8
Neutron diffraction has been used to study the magnetic order in
RuSr{2}GdCu2O8. The Ru moments order antiferromagnetically at T{N}=136(2)K,
coincident with the previously reported onset of ferromagnetism. Neighboring
spins are antiparallel in all three directions, with a low T moment of 1.18(6)
mu {B} along the c-axis. Our measurements put an upper limit of ~0.1 mu{B} to
any net zero-field moment, with fields exceeding ~0.4T needed to induce a
measurable magnetization. The Gd ions order independently at T{N}=2.50(2)K with
the same spin configuration. PACS numbers: 74.72.Jt, 75.25.+z, 74.25.Ha,
75.30.KzComment: Four pages, Latex, 5 eps figure
- …