4,294 research outputs found

    Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The etiology of AIS remains unclear, thus various hypotheses concerning its pathomechanism have been proposed. To date, biomechanical modeling has not been used to thoroughly study the influence of the abnormal growth profile (i.e., the growth rate of the vertebral body during the growth period) on the pathomechanism of curve progression in AIS. This study investigated the hypothesis that AIS progression is associated with the abnormal growth profiles of the anterior column of the spine.</p> <p>Methods</p> <p>A finite element model of the spinal column including growth dynamics was utilized. The initial geometric models were constructed from the bi-planar radiographs of a normal subject. Based on this model, five other geometric models were generated to emulate different coronal and sagittal curves. The detailed modeling integrated vertebral body growth plates and growth modulation spinal biomechanics. Ten years of spinal growth was simulated using AIS and normal growth profiles. Sequential measures of spinal alignments were compared.</p> <p>Results</p> <p>(1) Given the initial lateral deformity, the AIS growth profile induced a significant Cobb angle increase, which was roughly between three to five times larger compared to measures utilizing a normal growth profile. (2) Lateral deformities were absent in the models containing no initial coronal curvature. (3) The presence of a smaller kyphosis did not produce an increase lateral deformity on its own. (4) Significant reduction of the kyphosis was found in simulation results of AIS but not when using the growth profile of normal subjects.</p> <p>Conclusion</p> <p>Results from this analysis suggest that accelerated growth profiles may encourage supplementary scoliotic progression and, thus, may pose as a progressive risk factor.</p

    Excess mortality for care home residents during the first 23 weeks of the COVID-19 pandemic in England: a national cohort study

    Get PDF
    Background: To estimate excess mortality for care home residents during the COVID-19 pandemic in England, exploring associations with care home characteristics. Methods: Daily number of deaths in all residential and nursing homes in England notified to the Care Quality Commission (CQC) from 1 January 2017 to 7 August 2020. Care home-level data linked with CQC care home register to identify home characteristics: client type (over 65s/children and adults), ownership status (for-profit/not-for-profit; branded/independent) and size (small/medium/large). Excess deaths computed as the difference between observed and predicted deaths using local authority fixed-effect Poisson regressions on pre-pandemic data. Fixed-effect logistic regressions were used to model odds of experiencing COVID-19 suspected/confirmed deaths. Results: Up to 7 August 2020, there were 29,542 (95% CI 25,176 to 33,908) excess deaths in all care homes. Excess deaths represented 6.5% (95% CI 5.5 to 7.4%) of all care home beds, higher in nursing (8.4%) than residential (4.6%) homes. 64.7% (95% CI 56.4 to 76.0%) of the excess deaths were confirmed/suspected COVID-19. Almost all excess deaths were recorded in the quarter (27.4%) of homes with any COVID-19 fatalities. The odds of experiencing COVID-19 attributable deaths were higher in homes providing nursing services (OR 1.8, 95% CI 1.6 to 2.0), to older people and/or with dementia (OR 5.5, 95% CI 4.4 to 6.8), amongst larger (vs. small) homes (OR 13.3, 95% CI 11.5 to 15.4) and belonging to a large provider/brand (OR 1.2, 95% CI 1.1 to 1.3). There was no significant association with for-profit status of providers. Conclusions: To limit excess mortality, policy should be targeted at care homes to minimise the risk of ingress of disease and limit subsequent transmission. Our findings provide specific characteristic targets for further research on mechanisms and policy priority

    Self Interacting Dark Matter in the Solar System

    Get PDF
    Weakly coupled, almost massless, spin 0 particles have been predicted by many extensions of the standard model of particle physics. Recently, the PVLAS group observed a rotation of polarization of electromagnetic waves in vacuum in the presence of transverse magnetic field. This phenomenon is best explained by the existence of a weakly coupled light pseudoscalar particle. However, the coupling required by this experiment is much larger than the conventional astrophysical limits. Here we consider a hypothetical self-interacting pseudoscalar particle which couples weakly with visible matter. Assuming that these pseudoscalars pervade the galaxy, we show that the solar limits on the pseudoscalar-photon coupling can be evaded.Comment: 17 pages, 2 figure

    Superconductivity of metallic boron in MgB_2

    Full text link
    Boron in MgB_2 forms layers of honeycomb lattices with magnesium as a space filler. Band structure calculations indicate that Mg is substantially ionized, and the bands at the Fermi level derive mainly from B orbitals. Strong bonding with an ionic component and considerable metallic density of states yield a sizeable electron-phonon coupling. Using the rigid atomic sphere approximation and an analogy to Al, we estimate the coupling constant lambda to be of order 1. Together with high phonon frequencies, which we estimate via zone-center frozen phonon calculations to be between 300 and 700 cm^-1, this produces a high critical temperature, consistent with recent experiments reporting Tc=39 K (J. Akimitsu et al., to be published). Thus MgB_2 can be viewed as an analog of the long sought, but still hypothetical, superconducting metallic hydrogen.Comment: several typos corrected, most importantly, units in the tables fixed and a missing zero in the expression for the resistivity restore

    Distribution of velocities and acceleration for a particle in Brownian correlated disorder: inertial case

    Full text link
    We study the motion of an elastic object driven in a disordered environment in presence of both dissipation and inertia. We consider random forces with the statistics of random walks and reduce the problem to a single degree of freedom. It is the extension of the mean field ABBM model in presence of an inertial mass m. While the ABBM model can be solved exactly, its extension to inertia exhibits complicated history dependence due to oscillations and backward motion. The characteristic scales for avalanche motion are studied from numerics and qualitative arguments. To make analytical progress we consider two variants which coincide with the original model whenever the particle moves only forward. Using a combination of analytical and numerical methods together with simulations, we characterize the distributions of instantaneous acceleration and velocity, and compare them in these three models. We show that for large driving velocity, all three models share the same large-deviation function for positive velocities, which is obtained analytically for small and large m, as well as for m =6/25. The effect of small additional thermal and quantum fluctuations can be treated within an approximate method.Comment: 42 page

    High-pressure phase and transition phenomena in ammonia borane NH3BH3 from X-ray diffraction, Landau theory, and ab initio calculations

    Full text link
    Structural evolution of a prospective hydrogen storage material, ammonia borane NH3BH3, has been studied at high pressures up to 12 GPa and at low temperatures by synchrotron powder diffraction. At 293 K and above 1.1 GPa a disordered I4mm structure reversibly transforms into a new ordered phase. Its Cmc21 structure was solved from the diffraction data, the positions of N and B atoms and the orientation of NH3 and BH3 groups were finally assigned with the help of density functional theory calculations. Group-theoretical analysis identifies a single two-component order parameter, combining ordering and atomic displacement mechanisms, which link an orientationally disordered parent phase I4mm with ordered distorted Cmc21, Pmn21 and P21 structures. We propose a generic phase diagram for NH3BH3, mapping three experimentally found and one predicted (P21) phases as a function of temperature and pressure, along with the evolution of the corresponding structural distortions. Ammonia borane belongs to the class of improper ferroelastics and we show that both temperature- and pressure-induced phase transitions can be driven to be of the second order. The role of N-H...H-B dihydrogen bonds and other intermolecular interactions in the stability of NH3BH3 polymorphs is examined.Comment: 23 pages, 7 figure

    Numerical solution of the viscous flow past a cylinder with a non-global yet spectrally convergent meshless collocation method

    Get PDF
    Proceeding of: 11th International Conference on Spectral and High-Order Methods (ICOSAHOM'16), June 27-July 1, 2016, Rio de Janeiro, Brazil.The flow of a viscous fluid past a cylinder is a classical problem in fluid-structure interaction and a benchmark for numerical methods in computational fluid dynamics. We solve it with the recently introduced radial basis function-based partition of unity method (RBF-PUM), which is a spectrally convergent collocation meshless scheme well suited to this kind of problem. The resulting discrete system of nonlinear equations is tackled with a trust-region algorithm, whose performance is much enhanced by the analytic Jacobian which is provided alongside. Preliminary results up to Re = 60 with just 1292 nodes are shown.F. Bernal acknowledges support from FCT grant SFRH/BPD/79986/2011 and INESC-ID. A. Heryudono is partially supported by NSF Grant DMS 1552238Publicad

    Steep sharp-crested gravity waves on deep water

    Full text link
    A new type of steady steep two-dimensional irrotational symmetric periodic gravity waves on inviscid incompressible fluid of infinite depth is revealed. We demonstrate that these waves have sharper crests in comparison with the Stokes waves of the same wavelength and steepness. The speed of a fluid particle at the crest of new waves is greater than their phase speed.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    The effect of altering loading distance on skeleton start performance: Is higher pre-load velocity always beneficial?

    Get PDF
    Athletes initiating skeleton runs differ in the number of steps taken before loading the sled. We aimed to understand how experimentally modifying loading distance influenced sled velocity and overall start performance. Ten athletes (five elite, five talent; 67% of all national athletes) underwent two to four sessions, consisting of two dry-land push starts in each of three conditions (preferred, long and short loading distances). A magnet encoder on the sled wheel provided velocity profiles and the overall performance measure (sled acceleration index). Longer pre load distances (12% average increase from preferred to long distances) were related to higher pre-load velocity (r = 0.94), but lower load effectiveness (r = 0.75; average reduction 29%). Performance evaluations across conditions revealed that elite athletes’ preferred distance push starts were typically superior to the other conditions. Short loading distances were generally detrimental, whereas pushing the sled further improved some talent-squad athletes’ performance. Thus, an important trade-off between generating high pre load velocity and loading effectively was revealed, which coaches should consider when encouraging athletes to load later. This novel intervention study conducted within a real-world training setting has demonstrated the scope to enhance push-start performance by altering loading distance, particularly in developing athletes with less extensive training experience

    Rotating light, OAM paradox and relativistic complex scalar field

    Full text link
    Recent studies show that the angular momentum, both spin and orbital, of rotating light beams possesses counter-intuitive characteristics. We present a new approach to the question of orbital angular momentum of light based on the complex massless scalar field representation of light. The covariant equation for the scalar field is treated in rotating system using the general relativistic framework. First we show the equivalence of the U(1) gauge current for the scalar field with the Poynting vector continuity equation for paraxial light, and then apply the formalism to the calculation of the orbital angular momentum of rotating light beams. If the difference between the co-, contra-, and physical quantities is properly accounted for there does not result any paradox in the orbital angular momentum of rotating light. An artificial analogue of the paradoxical situation could be constructed but it is wrong within the present formalism. It is shown that the orbital angular momentum of rotating beam comprising of modes with opposite azimuthal indices corresponds to that of rigid rotation. A short review on the electromagnetism in noninertial systems is presented to motivate a fully covariant Maxwell field approach in rotating system to address the rotating light phenomenon.Comment: No figure
    corecore