5,564 research outputs found

    CLEO-c and CESR-c: A New Frontier in Weak and Strong Interactions

    Full text link
    We report on the physics potential of a proposed conversion of the CESR machine and the CLEO detector to a charm and QCD factory: CLEO-c and CESR-c that will make crucial contributions to flavor physics in this decade and offers our best hope for mastering non-perturbative QCD which is essential if we are to understand strongly coupled sectors in the new physics that lies beyond the Standard Model.Comment: 11 pages, 8 figures, submitted to the proceedings of the 9th International Symposium on Heavy Flavor Physics, September 10-13, 2001, Caltech, Pasadena, US

    Towards Coherent Neutrino Detection Using Low-Background Micropattern Gas Detectors

    Get PDF
    The detection of low energy neutrinos (<< few tens of MeV) via coherent nuclear scattering remains a holy grail of sorts in neutrino physics. This uncontroversial mode of interaction is expected to profit from a sizeable increase in cross section proportional to neutron number squared in the target nucleus, an advantageous feature in view of the small probability of interaction via all other channels in this energy region. A coherent neutrino detector would open the door to many new applications, ranging from the study of fundamental neutrino properties to true "neutrino technology". Unfortunately, present-day radiation detectors of sufficiently large mass (>> 1 kg) are not sensitive to sub-keV nuclear recoils like those expected from this channel. The advent of Micropattern Gas Detectors (MPGDs), new technologies originally intended for use in High Energy Physics, may soon put an end to this impasse. We present first tests of MPGDs fabricated with radioclean materials and discuss the approach to assessing their sensitivity to these faint signals. Applications are reviewed, in particular their use as a safeguard against illegitimate operation of nuclear reactors. A first industrial mass production of Gas Electron Multipliers (GEMs) is succinctly described.Comment: Presented at the 2002 IEEE Nuclear Science Symposium and Medical Imaging Conference, Norfolk VA, November 10-16. Submitted to IEEE Tran. Nucl. Sci. Five pages, eight figure

    Medipix3 Demonstration and understanding of near ideal detector performance for 60 & 80 keV electrons

    Full text link
    In our article we report first quantitative measurements of imaging performance for the current generation of hybrid pixel detector, Medipix3, as direct electron detector. Utilising beam energies of 60 & 80 keV, measurements of modulation transfer function (MTF) and detective quantum efficiency (DQE) have revealed that, in single pixel mode (SPM), energy threshold values can be chosen to maximize either the MTF or DQE, obtaining values near to, or even exceeding, those for an ideal detector. We have demonstrated that the Medipix3 charge summing mode (CSM) can deliver simultaneous, near ideal values of both MTF and DQE. To understand direct detection performance further we have characterized the detector response to single electron events, building an empirical model which can predict detector MTF and DQE performance based on energy threshold. Exemplifying our findings we demonstrate the Medipix3 imaging performance, recording a fully exposed electron diffraction pattern at 24-bit depth and images in SPM and CSM modes. Taken together our findings highlight that for transmission electron microscopy performed at low energies (energies <100 keV) thick hybrid pixel detectors provide an advantageous and alternative architecture for direct electron imagin

    GEM Operation in Negative Ion Drift Gas Mixtures

    Full text link
    The first operation of GEM gas gain elements in negative ion gas mixtures is reported. Gains up to several thousand were obtained from single-stage GEMs in carbon disulfide vapor at low pressure, and in mixtures of carbon disulfide with Argon and Helium, some near 1 bar total pressure.Comment: 7 pages, 3 figure

    Measurement of the Neutron Lifetime by Counting Trapped Protons in a Cold Neutron Beam

    Full text link
    A measurement of the neutron lifetime τn\tau_{n} performed by the absolute counting of in-beam neutrons and their decay protons has been completed. Protons confined in a quasi-Penning trap were accelerated onto a silicon detector held at a high potential and counted with nearly unit efficiency. The neutrons were counted by a device with an efficiency inversely proportional to neutron velocity, which cancels the dwell time of the neutron beam in the trap. The result is τn=(886.6±1.2[stat]±3.2[sys])\tau_{n} = (886.6\pm1.2{\rm [stat]}\pm3.2{\rm [sys]}) s, which is the most precise measurement of the lifetime using an in-beam method. The systematic uncertainty is dominated by neutron counting, in particular the mass of the deposit and the 6^{6}Li({\it{n,t}}) cross section. The measurement technique and apparatus, data analysis, and investigation of systematic uncertainties are discussed in detail.Comment: 71 pages, 20 figures, 9 tables; submitted to PR

    Moments of the B Meson Inclusive Semileptonic Decay Rate using Neutrino Reconstruction

    Get PDF
    We present a measurement of the composition of B meson inclusive semileptonic decays using 9.4 fb^-1 of e^+e^- data taken with the CLEO detector at the Upsilon(4S) resonance. In addition to measuring the charged lepton kinematics, the neutrino four-vector is inferred using the hermiticity of the detector. We perform a maximum likelihood fit over the full three-dimensional differential decay distribution for the fractional contributions from the B -> X_c l nu processes with X_c = D, D*, D**, and nonresonant X_c, and the process B -> X_u l nu. From the fit results we extract the first and second moments of the M_X^2 and q^2 distributions with minimum lepton-energy requirements of 1.0 GeV and 1.5 GeV. We find = 0.456 +- 0.014 +- 0.045 +- 0.109 (GeV/c^2)^2 with a minimum lepton energy of 1.0 GeV and = 0.293 +- 0.012 +- 0.033 +- 0.048 (GeV/c^2)^2 with minimum lepton energy of 1.5 GeV. The uncertainties are from statistics, detector systematic effects, and model dependence, respectively. As a test of the HQET and OPE calculations, the results for the M^X_c moment as a function of the minimum lepton energy requirement are compared to the predictions.Comment: 26 pages postscript, als available through http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with following preprint hep-ex/0403053

    Measurement of \cal{B}(D^+ --> mu^+ nu) and the Pseudoscalar Decay Constant fD+f_{D^+}

    Full text link
    In 60 pb-1 of data taken on the psi(3770) resonance with the CLEO-c detector, we find 8 D+ to mu+ nu event candidates that are mostly signal, containing only 1 estimated background. Using this statistically compelling sample, we measure preliminary values of B(D+ to mu+ nu) = (3.5 +- 1.4 +- 0.6)*10^{-4}, and determine f_{D+} =(201+- 41+- 17) MeV.Comment: 17 pages postscript, also available through http://www.lns.cornell.edu/public/CONF/2004/, Presented at ICHEP Aug 16-22,2004, Beijing, Chin

    Observation of Two Narrow States Decaying into Ξc+γ\Xi_{c}^{+}\gamma and Ξc0γ\Xi_{c}^{0}\gamma

    Full text link
    We report the first observation of two narrow charmed strange baryons decaying to Ξc+γ\Xi_c^+\gamma and Ξc0γ\Xi_c^0\gamma, respectively, using data from the CLEO II detector at CESR. We interpret the observed signals as the Ξc+(csu)\Xi_c^{+\prime}(c{su}) and Ξc0(csd)\Xi_c^{0\prime}(c{sd}), the symmetric partners of the well-established antisymmetric Ξc+(c[su])\Xi_c^+(c[su]) and Ξc0(c[sd])\Xi_c^0(c[sd]). The mass differences M(Ξc+)M(Ξc+)M(\Xi_c^{+\prime})-M(\Xi_c^+) and M(Ξc0)M(Ξc0)M(\Xi_c^{0\prime})-M(\Xi_c^0) are measured to be 107.8±1.7±2.5107.8\pm 1.7\pm 2.5 and 107.0±1.4±2.5MeV/c2107.0\pm 1.4\pm 2.5 MeV/c^2, respectively.Comment: 11 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Update of the measurement of the cross section for e^+e^- -> psi(3770) -> hadrons

    Full text link
    We have updated our measurement of the cross section for e^+e^- -> psi(3770) -> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) -> hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96, 092002 (2006). Simultaneous with this arXiv update, we have published an erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have corrected a mistake in the computation of the error on the difference of the cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) -> DDbar. We have also used a more recent CLEO measurement of cross section for e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.Comment: 3 pages, 0 figures. This is an erratum to Phys.Rev.Lett.96:092002,2006. Added a reference
    corecore