5,564 research outputs found
CLEO-c and CESR-c: A New Frontier in Weak and Strong Interactions
We report on the physics potential of a proposed conversion of the CESR
machine and the CLEO detector to a charm and QCD factory: CLEO-c and CESR-c
that will make crucial contributions to flavor physics in this decade and
offers our best hope for mastering non-perturbative QCD which is essential if
we are to understand strongly coupled sectors in the new physics that lies
beyond the Standard Model.Comment: 11 pages, 8 figures, submitted to the proceedings of the 9th
International Symposium on Heavy Flavor Physics, September 10-13, 2001,
Caltech, Pasadena, US
Towards Coherent Neutrino Detection Using Low-Background Micropattern Gas Detectors
The detection of low energy neutrinos ( few tens of MeV) via coherent
nuclear scattering remains a holy grail of sorts in neutrino physics. This
uncontroversial mode of interaction is expected to profit from a sizeable
increase in cross section proportional to neutron number squared in the target
nucleus, an advantageous feature in view of the small probability of
interaction via all other channels in this energy region. A coherent neutrino
detector would open the door to many new applications, ranging from the study
of fundamental neutrino properties to true "neutrino technology".
Unfortunately, present-day radiation detectors of sufficiently large mass (
1 kg) are not sensitive to sub-keV nuclear recoils like those expected from
this channel. The advent of Micropattern Gas Detectors (MPGDs), new
technologies originally intended for use in High Energy Physics, may soon put
an end to this impasse. We present first tests of MPGDs fabricated with
radioclean materials and discuss the approach to assessing their sensitivity to
these faint signals. Applications are reviewed, in particular their use as a
safeguard against illegitimate operation of nuclear reactors. A first
industrial mass production of Gas Electron Multipliers (GEMs) is succinctly
described.Comment: Presented at the 2002 IEEE Nuclear Science Symposium and Medical
Imaging Conference, Norfolk VA, November 10-16. Submitted to IEEE Tran. Nucl.
Sci. Five pages, eight figure
Medipix3 Demonstration and understanding of near ideal detector performance for 60 & 80 keV electrons
In our article we report first quantitative measurements of imaging
performance for the current generation of hybrid pixel detector, Medipix3, as
direct electron detector. Utilising beam energies of 60 & 80 keV, measurements
of modulation transfer function (MTF) and detective quantum efficiency (DQE)
have revealed that, in single pixel mode (SPM), energy threshold values can be
chosen to maximize either the MTF or DQE, obtaining values near to, or even
exceeding, those for an ideal detector. We have demonstrated that the Medipix3
charge summing mode (CSM) can deliver simultaneous, near ideal values of both
MTF and DQE. To understand direct detection performance further we have
characterized the detector response to single electron events, building an
empirical model which can predict detector MTF and DQE performance based on
energy threshold. Exemplifying our findings we demonstrate the Medipix3 imaging
performance, recording a fully exposed electron diffraction pattern at 24-bit
depth and images in SPM and CSM modes. Taken together our findings highlight
that for transmission electron microscopy performed at low energies (energies
<100 keV) thick hybrid pixel detectors provide an advantageous and alternative
architecture for direct electron imagin
GEM Operation in Negative Ion Drift Gas Mixtures
The first operation of GEM gas gain elements in negative ion gas mixtures is
reported. Gains up to several thousand were obtained from single-stage GEMs in
carbon disulfide vapor at low pressure, and in mixtures of carbon disulfide
with Argon and Helium, some near 1 bar total pressure.Comment: 7 pages, 3 figure
Measurement of the Neutron Lifetime by Counting Trapped Protons in a Cold Neutron Beam
A measurement of the neutron lifetime performed by the absolute
counting of in-beam neutrons and their decay protons has been completed.
Protons confined in a quasi-Penning trap were accelerated onto a silicon
detector held at a high potential and counted with nearly unit efficiency. The
neutrons were counted by a device with an efficiency inversely proportional to
neutron velocity, which cancels the dwell time of the neutron beam in the trap.
The result is s, which
is the most precise measurement of the lifetime using an in-beam method. The
systematic uncertainty is dominated by neutron counting, in particular the mass
of the deposit and the Li({\it{n,t}}) cross section. The measurement
technique and apparatus, data analysis, and investigation of systematic
uncertainties are discussed in detail.Comment: 71 pages, 20 figures, 9 tables; submitted to PR
Moments of the B Meson Inclusive Semileptonic Decay Rate using Neutrino Reconstruction
We present a measurement of the composition of B meson inclusive semileptonic
decays using 9.4 fb^-1 of e^+e^- data taken with the CLEO detector at the
Upsilon(4S) resonance. In addition to measuring the charged lepton kinematics,
the neutrino four-vector is inferred using the hermiticity of the detector. We
perform a maximum likelihood fit over the full three-dimensional differential
decay distribution for the fractional contributions from the B -> X_c l nu
processes with X_c = D, D*, D**, and nonresonant X_c, and the process B -> X_u
l nu. From the fit results we extract the first and second moments of the M_X^2
and q^2 distributions with minimum lepton-energy requirements of 1.0 GeV and
1.5 GeV. We find = 0.456 +- 0.014 +- 0.045 +- 0.109
(GeV/c^2)^2 with a minimum lepton energy of 1.0 GeV and =
0.293 +- 0.012 +- 0.033 +- 0.048 (GeV/c^2)^2 with minimum lepton energy of 1.5
GeV. The uncertainties are from statistics, detector systematic effects, and
model dependence, respectively. As a test of the HQET and OPE calculations, the
results for the M^X_c moment as a function of the minimum lepton energy
requirement are compared to the predictions.Comment: 26 pages postscript, als available through
http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with
following preprint hep-ex/0403053
Measurement of \cal{B}(D^+ --> mu^+ nu) and the Pseudoscalar Decay Constant
In 60 pb-1 of data taken on the psi(3770) resonance with the CLEO-c detector,
we find 8 D+ to mu+ nu event candidates that are mostly signal, containing only
1 estimated background. Using this statistically compelling sample, we measure
preliminary values of B(D+ to mu+ nu) = (3.5 +- 1.4 +- 0.6)*10^{-4}, and
determine f_{D+} =(201+- 41+- 17) MeV.Comment: 17 pages postscript, also available through
http://www.lns.cornell.edu/public/CONF/2004/, Presented at ICHEP Aug
16-22,2004, Beijing, Chin
Observation of Two Narrow States Decaying into and
We report the first observation of two narrow charmed strange baryons
decaying to and , respectively, using data from
the CLEO II detector at CESR. We interpret the observed signals as the
and , the symmetric partners
of the well-established antisymmetric and .
The mass differences and
are measured to be and
, respectively.Comment: 11 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Update of the measurement of the cross section for e^+e^- -> psi(3770) -> hadrons
We have updated our measurement of the cross section for e^+e^- -> psi(3770)
-> hadrons, our publication "Measurement of sigma(e^+e^- -> psi(3770) ->
hadrons) at E_{c.m.} = 3773 MeV", arXiv:hep-ex/0512038, Phys.Rev.Lett.96,
092002 (2006). Simultaneous with this arXiv update, we have published an
erratum in Phys.Rev.Lett.104, 159901 (2010). There, and in this update, we have
corrected a mistake in the computation of the error on the difference of the
cross sections for e^+e^- -> psi(3770) -> hadrons and e^+e^- -> psi(3770) ->
DDbar. We have also used a more recent CLEO measurement of cross section for
e^+e^- -> psi(3770) -> DDbar. From this, we obtain an upper limit on the
branching fraction for psi(3770) -> non-DDbar of 9% at 90% confidence level.Comment: 3 pages, 0 figures. This is an erratum to
Phys.Rev.Lett.96:092002,2006. Added a reference
- …
