236 research outputs found

    A novel non-Fermi-liquid state in the iron-pnictide FeCrAs

    Full text link
    We report transport and thermodynamic properties of stoichiometric single crystals of the hexagonal iron-pnictide FeCrAs. The in-plane resistivity shows an unusual "non-metallic" dependence on temperature T, rising continuously with decreasing T from ~ 800 K to below 100 mK. The c-axis resistivity is similar, except for a sharp drop upon entry into an antiferromagnetic state at T_N 125 K. Below 10 K the resistivity follows a non-Fermi-liquid power law, rho(T) = rho_0 - AT^x with x<1, while the specific heat shows Fermi liquid behaviour with a large Sommerfeld coefficient, gamma ~ 30 mJ/mol K^2. The high temperature properties are reminiscent of those of the parent compounds of the new layered iron-pnictide superconductors, however the T -> 0 properties suggest a new class of non-Fermi liquid.Comment: 6 pages, 4 figure

    From soft harmonic phonons to fast relaxational dynamics in CH3_{3}NH3_{3}PbBr3_{3}

    Full text link
    The lead-halide perovskites, including CH3_{3}NH3_{3}PbBr3_{3}, are components in cost effective, highly efficient photovoltaics, where the interactions of the molecular cations with the inorganic framework are suggested to influence the electronic and ferroelectric properties. CH3_{3}NH3_{3}PbBr3_{3} undergoes a series of structural transitions associated with orientational order of the CH3_{3}NH3_{3} (MA) molecular cation and tilting of the PbBr3_{3} host framework. We apply high-resolution neutron scattering to study the soft harmonic phonons associated with these transitions, and find a strong coupling between the PbBr3_{3} framework and the quasistatic CH3_{3}NH3_{3} dynamics at low energy transfers. At higher energy transfers, we observe a PbBr6_{6} octahedra soft mode driving a transition at 150 K from bound molecular excitations at low temperatures to relatively fast relaxational excitations that extend up to ∼\sim 50-100 meV. We suggest that these temporally overdamped dynamics enables possible indirect band gap processes in these materials that are related to the enhanced photovoltaic properties.Comment: (main text - 5 pages, 4 figures; supplementary information - 3 pages, 3 figures

    Direct relation between the low-energy spin excitations and superconductivity of overdoped high-TcT_c superconductors

    Full text link
    The dynamic spin susceptibility, χ′′(ω)\chi''(\omega), has been measured over the energy range of 2≤ω≤102 \leq \omega \leq 10 meV for overdoped La2−x_{2-x}Srx_{x}CuO4_{4}. Incommensurate (IC) spin excitations are observed at 8 K for all superconducting samples for 0.25≤x≤0.280.25 \leq x \leq 0.28 with χ′′\chi'' peaking at ∼6\sim 6 meV. The IC peaks at 6 meV become smaller in intensity with increasing xx and, finally, become unobservable for a sample with x=0.30x=0.30 which has no bulk superconductivity. The maximum χ′′\chi'' decreases linearly with TcT_c(onset) in the overdoped region, implying a direct cooperative relation between the spin fluctuations and the superconductivity.Comment: 4 pages, 4 figure

    Non-Fermi-liquid behavior in Ce(Ru1−x_{1-x}Fex_x)2_2Ge2_2: cause and effect

    Full text link
    We present inelastic neutron scattering measurements on the intermetallic compounds Ce(Ru1−x_{1-x}Fex_x)2_2Ge2_2 (xx=0.65, 0.76 and 0.87). These compounds represent samples in a magnetically ordered phase, at a quantum critical point and in the heavy-fermion phase, respectively. We show that at high temperatures the three compositions have the identical response of a local moment system. However, at low temperatures the spin fluctuations in the critical composition are given by non-Fermi-liquid dynamics, while the spin fluctuations in the heavy fermion system show a simple exponential decay in time. In both compositions, the lifetime of the fluctuations is determined solely by the distance to the quantum critical point. We discuss the implications of these observations regarding the possible origins of non-Fermi-liquid behavior in this system.Comment: 4 figures, submitted to PR

    Two-Loop Self-Energy Corrections to the Fine-Structure

    Get PDF
    We investigate two-loop higher-order binding corrections to the fine structure, which contribute to the spin-dependent part of the Lamb shift. Our calculation focuses on the so-called ``two-loop self-energy'' involving two virtual closed photon loops. For bound states, this correction has proven to be notoriously difficult to evaluate. The calculation of the binding corrections to the bound-state two-loop self-energy is simplified by a separate treatment of hard and soft virtual photons. The two photon-energy scales are matched at the end of the calculation. We explain the significance of the mathematical methods employed in the calculation in a more general context, and present results for the fine-structure difference of the two-loop self-energy through the order of α8\alpha^8.Comment: 19 pages, LaTeX, 2 figures; J. Phys. A (in press); added analytic results for two-loop form-factor slopes (by P. Mastrolia and E. Remiddi

    Magnetic Ordering in the Spin-Ice Candidate Ho2_2Ru2_2O7_7

    Full text link
    Neutron scattering measurements on the spin-ice candidate material Ho2_2Ru2_2O7_7 have revealed two magnetic transitions at T ∼\sim 95 K and T ∼\sim 1.4 K to long-range ordered states involving the Ru and Ho sublattices, respectively. Between these transitions, the Ho3+^{3+} moments form short-ranged ordered spin clusters. The internal field provided by the ordered S=1 Ru4+^{4+} moments disrupts the fragile spin-ice state and drives the Ho3+^{3+} moments to order. We have directly measured a slight shift in the Ho3+^{3+} crystal field levels at 95 K from the Ru ordering.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Letter

    Magnetic properties of the overdoped superconductor La2−x_{2-x}Srx_{x}CuO4_{4} with and without Zn impurities

    Full text link
    The magnetic properties of the Zn-substituted overdoped high-TcT_c superconductor La2−x_{2-x}Srx_{x}Cu1−y_{1-y}Zny_{y}O4_{4} have been studied by magnetization measurements and neutron scattering. Magnetization measurements reveal that for Zn-free samples with x≥0.22x \geq 0.22 a Curie term is induced in the temperature dependence of the magnetic susceptibility implying the existence of local paramagnetic moments. The induced Curie constant corresponds to a moment of 0.5 μB\mu_B per additional Sr2+^{2+} ion that exceeds x=0.22x=0.22. Zn-substitution in the overdoped \lsco also induces a Curie term that corresponds to 1.2 μB\mu_B per Zn2+^{2+} ion, simultaneously suppressing TcT_c. The relationship between TcT_c and the magnitude of the Curie term for Zn-free \lsco with x≥0.22x \geq 0.22 and for Zn-substituted \lsco with x=0.22x = 0.22 are closely similar. This signifies a general competitive relationship between the superconductivity and the induced paramagnetic moment. Neutron scattering measurements show that Zn-substitution in overdoped \lsco anomalously enhances the inelastic magnetic scattering spectra around the (π,π)(\pi, \pi) position, peaking at ω∼7\omega \sim 7 meV. These facts are discussed on the basis of a "swiss-cheese" model of Zn-substituted systems as well as a microscopic phase separation scenario in the overdoped region indicated by muon-spin-relaxation measurements.Comment: 10 pages, 8 figure

    Path integral Monte Carlo simulations of silicates

    Full text link
    We investigate the thermal expansion of crystalline SiO2_2 in the β\beta-- cristobalite and the β\beta-quartz structure with path integral Monte Carlo (PIMC) techniques. This simulation method allows to treat low-temperature quantum effects properly. At temperatures below the Debye temperature, thermal properties obtained with PIMC agree better with experimental results than those obtained with classical Monte Carlo methods.Comment: 27 pages, 10 figures, Phys. Rev. B (in press
    • …
    corecore