1,523,673 research outputs found

    Quantization of bosonic fields with two mass and spin states

    Full text link
    We investigate bosonic fields possessing two mass and spin states. The density matrix in the first order formalism is obtained. The quantization of fields in the first order formulation is performed and propagators are found.Comment: 9 page

    Transition Probability to Turbulent Transport Regime

    Get PDF
    Transition phenomena between thermal noise state and turbulent state observed in a submarginal turbulent plasma are analyzed with statistical theory. Time-development of turbulent fluctuation is obtained by numerical simulations of Langevin equation which contains hysteresis characteristics. Transition rates between two states are analyzed. Transition from turbulent state to thermal noise state occurs in entire region between subcritical bifurcation point and linear stability boundary.Comment: 9 pages, 6 figures, to be published in Plasma Phys. Control. Fusio

    Hamilton-Jacobi quantization of singular Lagrangians with linear velocities

    Full text link
    In this paper, constrained Hamiltonian systems with linear velocities are investigated by using the Hamilton-Jacobi method. We shall consider the integrablity conditions on the equations of motion and the action function as well in order to obtain the path integral quantization of singular Lagrangians with linear velocities.Comment: late

    Analysis of the second order exchange self energy of a dense electron gas

    Full text link
    We investigate the evaluation of the six-fold integral representation for the second order exchange contribution to the self energy of a three dimensional electron gas at the Fermi surface.Comment: 6 page

    Can the flyby anomaly be attributed to earth-bound dark matter?

    Full text link
    We make preliminary estimates to assess whether the recently reported flyby anomaly can be attributed to dark matter interactions. We consider both elastic and exothermic inelastic scattering from dark matter constituents; for isotropic dark matter velocity distributions, the former decrease, while the latter increase, the final flyby velocity. The fact that the observed flyby velocity anomaly shows examples with both positive and negative signs, requires the dominance of different dark matter scattering processes along different flyby trajectories. The magnitude of the observed anomalies requires dark matter densities many orders of magnitude greater than the galactic halo density. Such a large density could result from an accumulation cascade, in which the solar system-bound dark matter density is much higher than the galactic halo density, and the earth-bound density is much higher than the solar system-bound density. We discuss a number of strong constraints on the hypothesis of a dark matter explanation for the flyby anomaly. These require dark matter to be non-self-annihilating, with the dark matter scattering cross section on nucleons much larger, and the dark matter mass much lighter, than usually assumed.Comment: Latex, 21 pages. v3: substantially revised and expanded; v4: version to appear in Phys. Rev.
    • …
    corecore