896 research outputs found
Influence of conformational fluctuations on enzymatic activity: modelling the functional motion of beta-secretase
Considerable insight into the functional activity of proteins and enzymes can
be obtained by studying the low-energy conformational distortions that the
biopolymer can sustain. We carry out the characterization of these large scale
structural changes for a protein of considerable pharmaceutical interest, the
human -secretase. Starting from the crystallographic structure of the
protein, we use the recently introduced beta-Gaussian model to identify, with
negligible computational expenditure, the most significant distortion occurring
in thermal equilibrium and the associated time scales. The application of this
strategy allows to gain considerable insight into the putative functional
movements and, furthermore, helps to identify a handful of key regions in the
protein which have an important mechanical influence on the enzymatic activity
despite being spatially distant from the active site. The results obtained
within the Gaussian model are validated through an extensive comparison against
an all-atom Molecular Dynamics simulation.Comment: To be published in a special issue of J. Phys.: Cond. Mat. (Bedlewo
Workshop
Measurement and application of electron stripping of ultrarelativistic
New measurements of the stripping cross-section for ultrarelativistic
hydrogen-like lead ions passing through aluminium and silicon have been
performed at the Advanced Wakefield experiment at CERN. Agreement with existing
measurements and theory has been obtained. Improvements in terms of electron
beam quality and ion beam diagnostic capability, as well as further
applications of such an electron beam, are discussed
MEG Upgrade Proposal
We propose the continuation of the MEG experiment to search for the charged
lepton flavour violating decay (cLFV) \mu \to e \gamma, based on an upgrade of
the experiment, which aims for a sensitivity enhancement of one order of
magnitude compared to the final MEG result, down to the
level. The key features of this new MEG upgrade are an increased rate
capability of all detectors to enable running at the intensity frontier and
improved energy, angular and timing resolutions, for both the positron and
photon arms of the detector. On the positron-side a new low-mass, single
volume, high granularity tracker is envisaged, in combination with a new highly
segmented, fast timing counter array, to track positron from a thinner stopping
target. The photon-arm, with the largest liquid xenon (LXe) detector in the
world, totalling 900 l, will also be improved by increasing the granularity at
the incident face, by replacing the current photomultiplier tubes (PMTs) with a
larger number of smaller photosensors and optimizing the photosensor layout
also on the lateral faces. A new DAQ scheme involving the implementation of a
new combined readout board capable of integrating the diverse functions of
digitization, trigger capability and splitter functionality into one condensed
unit, is also under development. We describe here the status of the MEG
experiment, the scientific merits of the upgrade and the experimental methods
we plan to use.Comment: A. M. Baldini and T. Mori Spokespersons. Research proposal submitted
to the Paul Scherrer Institute Research Committee for Particle Physics at the
Ring Cyclotron. 131 Page
The AWAKE Electron Spectrometer
The AWAKE experiment at CERN aims to use a proton driven plasma wakefield to accelerate electrons from 10â20 MeV up to GeV energies in a 10 m plasma cell. We present the design of the magnetic spectrometer which will measure the electron energy distribution. Results from the calibration of the spectrometer's scintillator and optical system are presented, along with a study of the backgrounds generated by the 400 GeV SPS proton beam
Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1â2)Ă10â12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data
Recommended from our members
Projected sensitivity of the LUX-ZEPLIN experiment to the 0ÎœÎČÎČ decay of Xe 136
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double ÎČ decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double ÎČ decay, taking advantage of the significant (>600 kg) Xe136 mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of Xe136 is projected to be 1.06Ă1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with Xe136 at 1.06Ă1027 years
Predictive rules of efflux inhibition and avoidance in Pseudomonas aeruginosa
Antibiotic-resistant bacteria rapidly spread in clinical and natural environments and challenge our modern lifestyle. A major component of defense against antibiotics in Gram-negative bacteria is a drug permeation barrier created by active efflux across the outer membrane. We identified molecular determinants defining the propensity of small peptidomimetic molecules to avoid and inhibit efflux pumps in Pseudomonas aeruginosa, a human pathogen notorious for its antibiotic resistance.Combining experimental and computational protocols, we mapped the fate of the compounds from structure-activity relationships through their dynamic behavior in solution, permeation across both the inner and outer membranes, and interaction with MexB, the major efflux transporter of P. aeruginosa. We identified predictors of efflux avoidance and inhibition and demonstrated their power by using a library of traditional antibiotics and compound series and by generating new inhibitors of MexB. The identified predictors will enable the discovery and optimization of anti-bacterial agents suitable for treatment of P. aeruginosa infections
- âŠ