14,252 research outputs found

    Nuclear matter symmetry energy and the neutron skin thickness of heavy nuclei

    Full text link
    Correlations between the thickness of the neutron skin in finite nuclei and the nuclear matter symmetry energy are studied in the Skyrme Hartree-Fock model. From the most recent analysis of the isospin diffusion data in heavy-ion collisions based on an isospin- and momentum-dependent transport model with in-medium nucleon-nucleon cross sections, a value of L=88±25L=88\pm 25 MeV for the slope of the nuclear symmetry energy at saturation density is extracted, and this imposes stringent constraints on both the parameters in the Skyrme effective interactions and the neutron skin thickness of heavy nuclei. Predicted thickness of the neutron skin is 0.22±0.040.22\pm 0.04 fm for % ^{208}Pb, 0.29±0.040.29\pm 0.04 fm for 132^{132}Sn, and 0.22±0.040.22\pm 0.04 fm for % ^{124}Sn.Comment: 6 pages, 4 figures, 1 table, revised version, to appear in PR

    Neutrino-cooled Accretion Disks around Spinning Black Holes

    Get PDF
    We calculate the structure of accretion disk around a spinning black hole for accretion rates 0.01 - 10 M_sun/s. The model is fully relativistic and treats accurately the disk microphysics including neutrino emissivity, opacity, electron degeneracy, and nuclear composition. We find that the accretion flow always regulates itself to a mildly degenerate state with the proton-to-nucleon ratio Y_e ~ 0.1 and becomes very neutron-rich. The disk has a well defined "ignition" radius where neutrino flux raises dramatically, cooling becomes efficient, and Y_e suddenly drops. We also calculate other characteristic radii of the disk, including the neutrino-opaque and neutrino-trapping radii, and show their dependence on the accretion rate. Accretion disks around fast-rotating black holes produce intense neutrino fluxes which may deposit enough energy above the disk to generate a GRB jet.Comment: 4 pages, 3 figures; to be published in AIP Conference Proceedings "Gamma Ray Bursts in the Swift Era," Nov. 29 - Dec. 2, 2005, Washington, D

    A Bayesian measurement error model for two-channel cell-based RNAi data with replicates

    Full text link
    RNA interference (RNAi) is an endogenous cellular process in which small double-stranded RNAs lead to the destruction of mRNAs with complementary nucleoside sequence. With the production of RNAi libraries, large-scale RNAi screening in human cells can be conducted to identify unknown genes involved in a biological pathway. One challenge researchers face is how to deal with the multiple testing issue and the related false positive rate (FDR) and false negative rate (FNR). This paper proposes a Bayesian hierarchical measurement error model for the analysis of data from a two-channel RNAi high-throughput experiment with replicates, in which both the activity of a particular biological pathway and cell viability are monitored and the goal is to identify short hair-pin RNAs (shRNAs) that affect the pathway activity without affecting cell activity. Simulation studies demonstrate the flexibility and robustness of the Bayesian method and the benefits of having replicates in the experiment. This method is illustrated through analyzing the data from a RNAi high-throughput screening that searches for cellular factors affecting HCV replication without affecting cell viability; comparisons of the results from this HCV study and some of those reported in the literature are included.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS496 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Super-soft symmetry energy encountering non-Newtonian gravity in neutron stars

    Full text link
    Considering the non-Newtonian gravity proposed in the grand unification theories, we show that the stability and observed global properties of neutron stars can not rule out the super-soft nuclear symmetry energies at supra-saturation densities. The degree of possible violation of the Inverse-Square-Law of gravity in neutron stars is estimated using an Equation of State (EOS) of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.Comment: Version accepted by Physical Review Letter

    "An Econometric Analysis of SARS and Avian Flu on International Tourist Arrivals to Asia"

    Get PDF
    This paper compares the impacts of SARS and human deaths arising from Avian Flu on international tourist arrivals to Asia. The effects of SARS and human deaths from Avian Flu will be compared directly according to human deaths. The nature of the short run and long run relationship is examined empirically by estimating a static line fixed effect model and a difference transformation dynamic model, respectively. Empirical results from the static fixed effect and difference transformation dynamic models are consistent, and indicate that both the short run and long run SARS effect have a more significant impact on international tourist arrivals than does Avian Flu. In addition, the effects of deaths arising from both SARS and Avian Flu suggest that SARS is more important to international tourist arrivals than is Avian Flu. Thus, while Avian Flu is here to stay, its effect is currently not as significant as that of SARS.

    Mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter within the relativistic impulse approximation

    Full text link
    The mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter are investigated using the nucleon optical potential obtained within the relativistic impulse approximation with the empirical nucleon-nucleon scattering amplitudes and the nuclear densities obtained in the relativistic mean field model. It is found that the isospin-splitting of nucleon mean free paths, sensitive to the imaginary part of the symmetry potential, changes its sign at certain high kinetic energy. The in-medium nucleon-nucleon cross sections are analytically and numerically demonstrated to be essentially independent of the isospin asymmetry of the medium and increase linearly with density in the high energy region where the relativistic impulse approximation is applicable.Comment: 13 pages, 6 figure
    corecore