76,713 research outputs found

    Semileptonic B(Bs,Bc)B(B_s, B_c) decays in the light-cone QCD sum rules

    Full text link
    Semileptonic BB(Bs,BcB_s, B_c) decays are investigated systematically in the light-cone QCD sum rules. Special emphasis is put on the LCSR calculation on weak form factors with an adequate chiral current correlator, which turns out to be particularly effective to control the pollution by higher twist components of spectator mesons. The result for each channel depends on the distribution amplitude of the the producing meson. The leading twist distribution amplitudes of the related heavy mesons and charmonium are worked out by a model approach in the reasonable way. A practical scenario is suggested to understand the behavior of weak form factors in the whole kinematically accessible ranges. The decay widths and branching ratios are estimated for several BB(BcB_c) decay modes of current interest.Comment: 8 pages, talk given by the first arthur at 4th International Conference on Flavor Physics (ICFP 2007), Beijing, China, Sept 24-28, 200

    Improved approach to the heavy-to-light form factors in the light-cone QCD sum

    Full text link
    A systematic analysis shows that the main uncertainties in the form factors are due to the twist-3 wave functions of the light mesons in the light-cone QCD sum rules. We propose an improved approach, in which the twist-3 wave functions doesn't make any contribution and therefore the possible pollution by them can be avoided, to re-examine BπB \to \pi semileptonic form factors. Also, a comparison between the previous and our results from the light-cone QCD sum rules is made. Our method will be beneficial to the precise extracting of Vub\mid{V_{ub}}\mid from the experimental data on the processes Bπν~B \to \pi \ell \widetilde{\nu_\ell}.Comment: New version to appear in PR

    On Binary Matroid Minors and Applications to Data Storage over Small Fields

    Full text link
    Locally repairable codes for distributed storage systems have gained a lot of interest recently, and various constructions can be found in the literature. However, most of the constructions result in either large field sizes and hence too high computational complexity for practical implementation, or in low rates translating into waste of the available storage space. In this paper we address this issue by developing theory towards code existence and design over a given field. This is done via exploiting recently established connections between linear locally repairable codes and matroids, and using matroid-theoretic characterisations of linearity over small fields. In particular, nonexistence can be shown by finding certain forbidden uniform minors within the lattice of cyclic flats. It is shown that the lattice of cyclic flats of binary matroids have additional structure that significantly restricts the possible locality properties of F2\mathbb{F}_{2}-linear storage codes. Moreover, a collection of criteria for detecting uniform minors from the lattice of cyclic flats of a given matroid is given, which is interesting in its own right.Comment: 14 pages, 2 figure

    Biorthonormal Matrix-Product-State Analysis for Non-Hermitian Transfer-Matrix Renormalization-Group in the Thermodynamic Limit

    Full text link
    We give a thorough Biorthonormal Matrix-Product-State (BMPS) analysis of the Transfer-Matrix Renormalization-Group (TMRG) for non-Hermitian matrices in the thermodynamic limit. The BMPS is built on a dual series of reduced biorthonormal bases for the left and right Perron states of a non-Hermitian matrix. We propose two alternative infinite-size Biorthonormal TMRG (iBTMRG) algorithms and compare their numerical performance in both finite and infinite systems. We show that both iBTMRGs produce a dual infinite-BMPS (iBMPS) which are translationally invariant in the thermodynamic limit. We also develop an efficient wave function transformation of the iBTMRG, an analogy of McCulloch in the infinite-DMRG [arXiv:0804.2509 (2008)], to predict the wave function as the lattice size is increased. The resulting iBMPS allows for probing bulk properties of the system in the thermodynamic limit without boundary effects and allows for reducing the computational cost to be independent of the lattice size, which are illustrated by calculating the magnetization as a function of the temperature and the critical spin-spin correlation in the thermodynamic limit for a 2D classical Ising model.Comment: 14 pages, 9 figure

    The BsKB_{s}\to K Form Factor in The Whole Kinematically Accessible Range

    Full text link
    A systematic analysis is presented of the BsKB_{s}\to K form factor f(q2)f(q^{2}) in the whole range of momentum transfer q2q^{2}, which would be useful to analyzing the future data on BsKB_{s}\to K decays and extracting Vub| V_{ub}|. With a modified QCD light cone sum rule (LCSR) approach, in which the contributions cancel out from the twist 3 wavefunctions of KK meson, we investigate in detail the behavior of f(q2)f(q^{2}) at small and intermediate q2q^{2} and the nonperturbative quantity fBgBBsKf_{B^{\ast}}g_{B^{\ast}B_{s}K} (fB(f_{B^{\ast}} is the decay constant of BB^{\ast} meson and gBBsKg_{B^{\ast}B_{s}K} the BBsKB^{\ast}B_{s}K strong coupling), whose numerical result is used to study q2q^{2} dependence of f(q2)f(q^{2}) at large q2q^{2} in the single pole approximation. Based on these findings, a form factor model from the best fit is formulated, which applies to the calculation on f(q2)f(q^{2}) in the whole kinematically accessible range. Also, a comparison is made with the standard LCSR predictions.Comment: 11 pages, Latex, 1 eps figure, Final version to appear in Phys.Rev.

    Monotone Grid Drawings of Planar Graphs

    Full text link
    A monotone drawing of a planar graph GG is a planar straight-line drawing of GG where a monotone path exists between every pair of vertices of GG in some direction. Recently monotone drawings of planar graphs have been proposed as a new standard for visualizing graphs. A monotone drawing of a planar graph is a monotone grid drawing if every vertex in the drawing is drawn on a grid point. In this paper we study monotone grid drawings of planar graphs in a variable embedding setting. We show that every connected planar graph of nn vertices has a monotone grid drawing on a grid of size O(n)×O(n2)O(n)\times O(n^2), and such a drawing can be found in O(n) time

    Hydrodynamics of superfluids confined in blocked rings and wedges

    Get PDF
    Motivated by many recent experimental studies of non-classical rotational inertia (NCRI) in superfluid and supersolid samples, we present a study of the hydrodynamics of a superfluid confined in the two-dimensional region (equivalent to a long cylinder) between two concentric arcs of radii bb and aa (b<ab<a) subtending an angle β\beta, with 0β2π0 \le \beta \le 2\pi. The case β=2π\beta= 2 \pi corresponds to a blocked ring. We discuss the methodology to compute the NCRI effects, and calculate these effects both for small angular velocities, when no vortices are present, and in the presence of a vortex. We find that, for a blocked ring, the NCRI effect is small, and that therefore there will be a large discontinuity in the moment of inertia associated with blocking or unblocking circular paths. For blocked wedges (b=0b=0) with β>π\beta > \pi, we find an unexpected divergence of the velocity at the origin, which implies the presence of either a region of normal fluid or a vortex for {\it any} nonzero value of the angular velocity. Implications of our results for experiments on "supersolid" behavior in solid 4He^4{\rm He} are discussed. A number of mathematical issues are pointed out and resolved.Comment: 15 pages, including figures. To appear in Phys. Rev.

    Binding-incompetent adenovirus facilitates molecular conjugate-mediated gene transfer by the receptor-mediated endocytosis pathway

    Get PDF
    Molecular conjugate vectors may be constructed that accomplish high efficiency gene transfer by the receptor-mediated endocytosis pathway. In order to mediate escape from lysosomal degradation, we have incorporated adenoviruses into the functional design of the conjugate. In doing so, however, we have introduced an additional ligand, which can bind to receptors on the cell surface, undermining the potential for cell specific targeting. To overcome this, we have treated the adenovirus with a monoclonal anti-fiber antibody, which renders the virus incapable of binding to its receptor. The result is a multi-functional molecular conjugate vector, which has preserved its binding specificity while at the same time being capable of preventing lysosomal degradation of endosome-internalized conjugate-DNA complexes. This finding indicates that adenoviral binding is not a prerequisite for adenoviral-mediated endosome disruption

    BKB\to K Transition Form Factor up to O(1/mb2){\cal O}(1/m^2_b) within the kTk_T Factorization Approach

    Full text link
    In the paper, we apply the kTk_T factorization approach to deal with the BKB\to K transition form factor F+,0BK(q2)F^{B\to K}_{+,0}(q^2) in the large recoil regions. The B-meson wave functions ΨB\Psi_B and ΨˉB\bar\Psi_B that include the three-particle Fock states' contributions are adopted to give a consistent PQCD analysis of the form factor up to O(1/mb2){\cal O} (1/m^2_b). It has been found that both the wave functions ΨB\Psi_B and ΨˉB\bar\Psi_B can give sizable contributions to the form factor and should be kept for a better understanding of the BB meson decays. Then the contributions from different twist structures of the kaon wavefunction are discussed, including the SUf(3)SU_f(3)-breaking effects. A sizable contribution from the twist-3 wave function Ψp\Psi_p is found, whose model dependence is discussed by taking two group of parameters that are determined by different distribution amplitude moments obtained in the literature. It is also shown that F+,0BK(0)=0.30±0.04F^{B\to K}_{+,0}(0)=0.30\pm0.04 and [F+,0BK(0)/F+,0Bπ(0)]=1.13±0.02[F^{B\to K}_{+,0}(0)/F^{B\to \pi}_{+,0}(0)]=1.13\pm0.02, which are more reasonable and consistent with the light-cone sum rule results in the large recoil regions.Comment: 22 pages and 6 figure
    corecore