40,715 research outputs found

    Construction of equilibrium networks with an energy function

    Full text link
    We construct equilibrium networks by introducing an energy function depending on the degree of each node as well as the product of neighboring degrees. With this topological energy function, networks constitute a canonical ensemble, which follows the Boltzmann distribution for given temperature. It is observed that the system undergoes a topological phase transition from a random network to a star or a fully-connected network as the temperature is lowered. Both mean-field analysis and numerical simulations reveal strong first-order phase transitions at temperatures which decrease logarithmically with the system size. Quantitative discrepancies of the simulation results from the mean-field prediction are discussed in view of the strong first-order nature.Comment: To appear in J. Phys.

    Sudden death of effective entanglement

    Full text link
    Sudden death of entanglement is a well-known effect resulting from the finite volume of separable states. We study the case when the observer has a limited measurement capability and analyse the effective entanglement, i.e. entanglement minimized over the output data. We show that in the well defined system of two quantum dots monitored by single electron transistors, one may observe a sudden death of effective entanglement when real, physical entanglement is still alive. For certain measurement setups, this occurs even for initial states for which sudden death of physical entanglement is not possible at all. The principles of the analysis may be applied to other analogous scenarios, such as etimation of the parameters arising from quantum process tomography.Comment: final version, 5 pages, 3 figure

    Persistent current in superconducting nanorings

    Full text link
    The superconductivity in very thin rings is suppressed by quantum phase slips. As a result the amplitude of the persistent current oscillations with flux becomes exponentially small, and their shape changes from sawtooth to a sinusoidal one. We reduce the problem of low-energy properties of a superconducting nanoring to that of a quantum particle in a sinusoidal potential and show that the dependence of the current on the flux belongs to a one-parameter family of functions obtained by solving the respective Schrodinger equation with twisted boundary conditions.Comment: 5 pages, 1 figur

    Effect of isoelectronic doping on honeycomb lattice iridate A_2IrO_3

    Full text link
    We have investigated experimentally and theoretically the series (Na1x_{1-x}Lix_{x})2_{2}IrO3_{3}. Contrary to what has been believed so far, only for x0.25x\leq0.25 the system forms uniform solid solutions. For larger Li content, as evidenced by powder X-ray diffraction, scanning electron microscopy and density functional theory calculations, the system shows a miscibility gap and a phase separation into an ordered Na3_{3}LiIr2_2O6_{6} phase with alternating Na3_3 and LiIr2_2O6_6 planes, and a Li-rich phase close to pure Li2_{2}IrO3_{3}. For x0.25x\leq 0.25 we observe (1) an increase of c/ac/a with Li doping up to x=0.25x=0.25, despite the fact that c/ac/a in pure Li2_{2}IrO3_{3} is smaller than in Na2_{2}IrO3_{3}, and (2) a gradual reduction of the antiferromagnetic ordering temperature TNT_{N} and ordered moment. The previously proposed magnetic quantum phase transition at x0.7x\approx 0.7 may occur in a multiphase region and its nature needs to be re-evaluated.Comment: 8 pages, 9 figures including supplemental informatio

    Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5

    Full text link
    In Cerium-based heavy electron materials, the 4f electron's magnetic moments bind to the itinerant quasiparticles to form composite heavy quasiparticles at low temperature. The volume of the Fermi surfacein the Brillouin zone incorporates the moments to produce a "large FS" due to the Luttinger theorem. When the 4f electrons are localized free moments, a "small FS" is induced since it contains only broad bands of conduction spd electrons. We have addressed theoretically the evolution of the heavy fermion FS as a function of temperature, using a first principles dynamical mean-field theory (DMFT) approach combined with density functional theory (DFT+DMFT). We focus on the archetypical heavy electrons in CeIrIn5, which is believed to be near a quantum critical point. Upon cooling, both the quantum oscillation frequencies and cyclotron masses show logarithmic scaling behavior (~ ln(T_0/T)) with different characteristic temperatures T_0 = 130 and 50 K, respectively. The resistivity coherence peak observed at T ~ 50 K is the result of the competition between the binding of incoherent 4f electrons to the spd conduction electrons at Fermi level and the formation of coherent 4f electrons.Comment: 5 pages main article,3 figures for the main article, 2 page Supplementary information, 2 figures for the Supplementary information. Supplementary movie 1 and 2 are provided on the webpage(http://www-ph.postech.ac.kr/~win/supple.html

    Decoherence Driven Quantum Transport

    Full text link
    We propose a new mechanism to generate a dc current of particles at zero bias based on a noble interplay between coherence and decoherence. We show that a dc current arises if the transport process in one direction is maintained coherent while the process in the opposite direction is incoherent. We provide possible implementations of the idea using an atomic Michelson and an atomic Aharonov-Bohm interferometer.Comment: 4 pages, 3 figure
    corecore