28,769 research outputs found

    An Effective Model of Magnetoelectricity in Multiferroics RMn2O5RMn_2O_5

    Full text link
    An effective model is developed to explain the phase diagram and the mechanism of magnetoelectric coupling in multiferroics, RMn2O5RMn_2O_5. We show that the nature of magnetoelectric coupling in RMn2O5RMn_2O_5 is a coupling between two Ising-type orders, namely, the ferroelectric order in the b axis, and the coupled magnetic order between two frustrated antiferromagnetic chains. The frustrated magnetic structure drives the system to a commensurate-incommensurate phase transition, which can be understood as a competition between a collinear or col-plane order stemming from the `order by disorder' mechanism and a chiral symmetry order. The low energy excitation is calculated and the effect of the external magnetic field is analyzed. Distinct features in the electromagnon spectrums in the incommensurate phase are predicted

    First-passage theory of exciton population loss in single-walled carbon nanotubes reveals micron-scale intrinsic diffusion lengths

    Full text link
    One-dimensional crystals have long range translational invariance which manifests as long exciton diffusion lengths, but such intrinsic properties are often obscured by environmental perturbations. We use a first-passage approach to model single-walled carbon nanotube (SWCNT) exciton dynamics (including exciton-exciton annihilation and end effects) and compare it to results from both continuous-wave and multi-pulse ultrafast excitation experiments to extract intrinsic SWCNT properties. Excitons in suspended SWCNTs experience macroscopic diffusion lengths, on the order of the SWCNT length, (1.3-4.7 um) in sharp contrast to encapsulated samples. For these pristine samples, our model reveals intrinsic lifetimes (350-750 ps), diffusion constants (130-350 cm^2/s), and absorption cross-sections (2.1-3.6 X 10^-17 cm^2/atom) among the highest previously reported.and diffusion lengths for SWCNTs.Comment: 6 pages, 3 figure

    High Spin Gauge Fields and Two-Time Physics

    Get PDF
    All possible interactions of a point particle with background electromagnetic, gravitational and higher-spin fields is considered in the two-time physics worldline formalism in (d,2) dimensions. This system has a counterpart in a recent formulation of two-time physics in non-commutative field theory with local Sp(2) symmetry. In either the worldline or field theory formulation, a general Sp(2) algebraic constraint governs the interactions, and determines equations that the background fields of any spin must obey. The constraints are solved in the classical worldline formalism (h-bar=0 limit) as well as in the field theory formalism (all powers of h-bar). The solution in both cases coincide for a certain 2T to 1T holographic image which describes a relativistic particle interacting with background fields of any spin in (d-1,1) dimensions. Two disconnected branches of solutions exist, which seem to have a correspondence as massless states in string theory, one containing low spins in the zero Regge slope limit, and the other containing high spins in the infinite Regge slope limit.Comment: LaTeX 22 pages. Typos corrected in version

    Nonlinearity in the Dark: Broadband Terahertz Generation with Extremely High Efficiency

    Get PDF
    Plasmonic metamaterials and metasurfaces offer new opportunities in developing high performance terahertz emitters and detectors beyond the limitations of conventional nonlinear materials. However, simple meta-atoms for second-order nonlinear applications encounter fundamental trade-offs in the necessary symmetry breaking and local-field enhancement due to radiation damping that is inherent to the operating resonant mode and cannot be controlled separately. Here we present a novel concept that eliminates this restriction obstructing the improvement of terahertz generation efficiency in nonlinear metasurfaces based on metallic nanoresonators. This is achieved by combining a resonant dark-state metasurface, which locally drives nonlinear nanoresonators in the near field, with a specific spatial symmetry that enables destructive interference of the radiating linear moments of the nanoresonators, and perfect absorption via simultaneous electric and magnetic critical coupling of the pump radiation to the dark mode. Our proposal allows eliminating linear radiation damping, while maintaining constructive interference and effective radiation of the nonlinear components. We numerically demonstrate a giant second-order nonlinear susceptibility around Hundred-Billionth m/V, a one order improvement compared with the previously reported split-ring-resonator metasurface, and correspondingly, a 2 orders of magnitude enhanced terahertz energy extraction should be expected with our configuration under the same conditions. Our study offers a paradigm of high efficiency tunable nonlinear metadevices and paves the way to revolutionary terahertz technologies and optoelectronic nanocircuitry.Comment: 6 pages, 4 figure

    Herschel GASPS spectral observations of T Tauri stars in Taurus: unraveling far-infrared line emission from jets and discs

    Get PDF
    At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, OH, and H2_{2}O) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. The atomic and molecular FIR (60-190 μm\rm \mu m) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. The much higher detection rate of emission lines in outflow sources and the compatibility of line ratios with shock model predictions supports the idea of a dominant contribution from the jet/outflow to the line emission, in particular at earlier stages of the stellar evolution as the brightness of FIR lines depends in large part on the specific evolutionary stage. [Abridged Abstract]Comment: 37 pages, 27 figures, accepted for publication in A&

    Infrared anomalous Hall effect in SrRuO3_3: Evidence for crossover to intrinsic behavior

    Full text link
    The origin of the Hall effect in many itinerant ferromagnets is still not resolved, with an anomalous contribution from the sample magnetization that can exhibit extrinsic or intrinsic behavior. We report the first mid-infared (MIR) measurements of the complex Hall (θH\theta_H), Faraday (θF\theta_F), and Kerr (θK\theta_K) angles, as well as the Hall conductivity (σxy\sigma_{xy}) in a SrRuO3_3 film in the 115-1400 meV energy range. The magnetic field, temperature, and frequency dependence of the Hall effect is explored. The MIR magneto-optical response shows very strong frequency dependence, including sign changes. Below 200 meV, the MIR θH(T)\theta_H (T) changes sign between 120 and 150 K, as is observed in dc Hall measurements. Above 200 meV, the temperature dependence of θH\theta_H is similar to that of the dc magnetization and the measurements are in good agreement with predictions from a band calculation for the intrinsic anomalous Hall effect (AHE). The temperature and frequency dependence of the measured Hall effect suggests that whereas the behavior above 200 meV is consistent with an intrinsic AHE, the extrinsic AHE plays an important role in the lower energy response.Comment: The resolution of figures is improve

    Helical edge and surface states in HgTe quantum wells and bulk insulators

    Full text link
    The quantum spin Hall (QSH) effect is the property of a new state of matter which preserves time-reversal, has an energy gap in the bulk, but has topologically robust gapless states at the edge. Recently, it has been shown that HgTe quantum wells realize this novel effect. In this work, we start from realistic tight-binding models and demonstrate the existence of the helical edge states in HgTe quantum wells and calculate their physical properties. We also show that 3d HgTe is a topological insulator under uniaxial strain, and show that the surface states are described by single-component massless relativistic Dirac fermions in 2+1 dimensions. Experimental predictions are made based on the quantitative results obtained from realistic calculations.Comment: 5 page

    Investigation of the structural and functional relationships of oneogene proteins

    Get PDF
    Proteins are the biomolecular workhorses driving the most biological processes in any living organism. These processes are based on selective interactions between particular proteins. So far, the rules governing the coding of the protein's biological function, i.e. its ability to selectively interact with other biomolecules, have not been elucidated. The resonant recognition model (RRM) is a novel physicomathematical approach established to analyze the interaction between a protein and its target. The RRM assumes that the specificities of protein interactions are based on the resonant electromagnetic energy transfer at the specific frequency for each interaction. One of the main applications of this model is to predict the location of a protein's biological active site(s) using digital signal processing. This paper incorporates the continuous wavelet transform (CWT) into the RRM to predict the active sites, for a chosen protein example. We have investigated the oncogene functional group using digital signal analysis methods, in particular Fourier transform and CWT; determined oncogenes' characteristic frequency and functional active sites; and performed the design of the peptide analogous. The results obtained provide new insights into the structure-function relationships of the analyzed oncogene protein family
    • …
    corecore