5,311 research outputs found
A mechanism for unipolar resistance switching in oxide non-volatile memory devices
Building on a recently introduced model for non-volatile resistive switching,
we propose a mechanism for unipolar resistance switching in
metal-insulator-metal sandwich structures. The commutation from the high to low
resistance state and back can be achieved with successive voltage sweeps of the
same polarity. Electronic correlation effects at the metal-insulator interface
are found to play a key role to produce a resistive commutation effect in
qualitative agreement with recent experimental reports on binary transition
metal oxide based sandwich structures.Comment: 4 pages, 2 figure
Spin-triplet pairing instability of the spinon Fermi surface in a U(1) spin liquid
Recent experiments on the organic compound \kappa-(ET)_2Cu_2(CN)_3 have
provided a promising example of a two dimensional spin liquid state. This phase
is described by a two-dimensional spinon Fermi sea coupled to a U(1) gauge
field. We study Kohn-Luttinger-like pairing instabilities of the spinon Fermi
surface due to singular interaction processes with twice-the-Fermi-momentum
transfer. We find that under certain circumstances the pairing instability
occurs in odd-orbital-angular-momentum/spin-triplet channels. Implications to
experiments are discussed.Comment: 4 pages, 1 figur
Hysteresis Switching Loops in Ag-manganite memristive interfaces
Multilevel resistance states in silver-manganite interfaces are studied both
experimentally and through a realistic model that includes as a main ingredient
the oxygen vacancies diffusion under applied electric fields. The switching
threshold and amplitude studied through Hysteresis Switching Loops are found to
depend critically on the initial state. The associated vacancy profiles further
unveil the prominent role of the effective electric field acting at the
interfaces. While experimental results validate main assumptions of the model,
the simulations allow to disentangle the microscopic mechanisms behind the
resistive switching in metal-transition metal oxide interfaces.Comment: 14 pages, 3 figures, to be published in Jour. of Appl. Phy
Performance of RF MEMS switches at low temperatures
The actuation voltage of microelectromechanical system (MEMS) \ud
metal switches was investigated at temperatures ranging from 10 to 290 K. The investigation shows a 50% increase in the actuation voltage at low temperature. A comparison has been made using a published model and showed similar increment of actuation voltage at low temperature
Construction and validation of a questionnaire to assess student satisfaction with mathematics learning materials
Sixth Edition Technological Ecosystems for Enhancing MulticulturalityMathematics is an essential branch for the scientific development and its study is mandatory in most university degrees. However, currently the level of academic performance and motivation of students to learn this science is not the desired one. The students can use different learning tools inside and outside the math classroom, enhancing the quality of the learning materials that are designed essentially to facilitate the learning of mathematics. The present research project aims to determine the validity and reliability of a measurement instrument that allows theassessment of the satisfaction of the students with the availablelearning materials. To fulfill the objectives of this research, the method of survey was used. A study with a quantitative approach was developed, which led to the design and validation of a questionnaire by a group of 7 experts. The validation closed after applying a pilot study with 728 students. It concluded positively, obtaining nine factors that coincide with the revision of the literature: technological quality, quality of content, visual quality, didactic significance, adequacy of content, relationship between theory and practice, involvement, contribution to learning, relevance and interaction between educational actors. The results of this questionnaire provide to the international scientific community with relevant information for the design, selection, and use of study materials in the classrooms, which will contribute to raising the levels of student engagement, and their academic performance in mathematics, secondaril
Four-quark Operators Relevant to B Meson Lifetimes from QCD Sum Rules
At the order of 1/m_b^3, the B meson lifetimes are controlled by the hadronic
matrix elements of some four-quark operators. The nonfactorizable magnitudes of
these four-quark operator matrix elements are analyzed by QCD sum rules in the
framework of heavy quark effective theory. The vacuum saturation for
color-singlet four-quark operators is justified at hadronic scale, and the
nonfactorizable effect is at a few percent level. However for color-octet
four-quark operators, the vacuum saturation is violated sizably that the
nonfactorizable effect cannot be neglected for the B meson lifetimes. The
implication to the extraction of some of the parameters from B decays is
discussed. The B meson lifetime ratio is predicted as
\tau(B^-)/\tau(B^0)=1.09\pm 0.02. However, the experimental result of the
lifetime ratio \tau(\Lambda_b)/\tau(B^0) still cannot be explained.Comment: 20 pages, latex, 6 figures, discussion on non-factorizable effect of
the four-quark condensate added, to appear in Phys. Rev. D57 (1998
Strong enhancement of drag and dissipation at the weak- to strong- coupling phase transition in a bi-layer system at a total Landau level filling nu=1
We consider a bi-layer electronic system at a total Landau level filling
factor nu =1, and focus on the transition from the regime of weak inter-layer
coupling to that of the strongly coupled (1,1,1) phase (or ''quantum Hall
ferromagnet''). Making the assumption that in the transition region the system
is made of puddles of the (1,1,1) phase embedded in a bulk of the weakly
coupled state, we show that the transition is accompanied by a strong increase
in longitudinal Coulomb drag, that reaches a maximum of approximately
. In that regime the longitudinal drag is increased with decreasing
temperature.Comment: four pages, one included figur
U(1) spin liquids and valence bond solids in a large-N three-dimensional Heisenberg model
We study possible quantum ground states of the Sp(N) generalized Heisenberg
model on a cubic lattice with nearest-neighbor and next-nearest-neighbor
exchange interactions. The phase diagram is obtained in the large-N limit and
fluctuation effects are considered via appropriate gauge theories. In
particular, we find three U(1) spin liquid phases with different short-range
magnetic correlations. These phases are characterized by deconfined gapped
spinons, gapped monopoles, and gapless ``photons''. As N becomes smaller, a
confinement transition from these phases to valence bond solids (VBS) may
occur. This transition is studied by using duality and analyzing the resulting
theory of monopoles coupled to a non-compact dual gauge field; the condensation
of the monopoles leads to VBS phases. We determine the resulting VBS phases
emerging from two of the three spin liquid states. On the other hand, the spin
liquid state near J_1 \approx J_2 appears to be more stable against monopole
condensation and could be a promising candidate for a spin liquid state in real
systems.Comment: revtex file 12 pages, 17 figure
Coulomb drag as a signature of the paired quantum Hall state
Motivated by the recent Coulomb drag experiment of M. P. Lilly et. al, we
study the Coulomb drag in a two-layer system with Landau level filling factor
. We find that the drag conductivity in the incompressible paired
quantum Hall state at zero temperature can be finite. The drag conductivity is
also greatly enhanced above , at which the transition between the weakly
coupled compressible liquids and the paired quantum Hall liquid takes place. We
discuss the implications of our results for the recent experiment.Comment: 4 pages, 1 figure included, replaced by the published versio
- …