8,703 research outputs found

    Providing End-to-End Delay Guarantees for Multi-hop Wireless Sensor Networks over Unreliable Channels

    Full text link
    Wireless sensor networks have been increasingly used for real-time surveillance over large areas. In such applications, it is important to support end-to-end delay constraints for packet deliveries even when the corresponding flows require multi-hop transmissions. In addition to delay constraints, each flow of real-time surveillance may require some guarantees on throughput of packets that meet the delay constraints. Further, as wireless sensor networks are usually deployed in challenging environments, it is important to specifically consider the effects of unreliable wireless transmissions. In this paper, we study the problem of providing end-to-end delay guarantees for multi-hop wireless networks. We propose a model that jointly considers the end-to-end delay constraints and throughput requirements of flows, the need for multi-hop transmissions, and the unreliable nature of wireless transmissions. We develop a framework for designing feasibility-optimal policies. We then demonstrate the utility of this framework by considering two types of systems: one where sensors are equipped with full-duplex radios, and the other where sensors are equipped with half-duplex radios. When sensors are equipped with full-duplex radios, we propose an online distributed scheduling policy and proves the policy is feasibility-optimal. We also provide a heuristic for systems where sensors are equipped with half-duplex radios. We show that this heuristic is still feasibility-optimal for some topologies

    An Energy-Aware Protocol for Self-Organizing Heterogeneous LTE Systems

    Get PDF
    This paper studies the problem of self-organizing heterogeneous LTE systems. We propose a model that jointly considers several important characteristics of heterogeneous LTE system, including the usage of orthogonal frequency division multiple access (OFDMA), the frequency-selective fading for each link, the interference among different links, and the different transmission capabilities of different types of base stations. We also consider the cost of energy by taking into account the power consumption, including that for wireless transmission and that for operation, of base stations and the price of energy. Based on this model, we aim to propose a distributed protocol that improves the spectrum efficiency of the system, which is measured in terms of the weighted proportional fairness among the throughputs of clients, and reduces the cost of energy. We identify that there are several important components involved in this problem. We propose distributed strategies for each of these components. Each of the proposed strategies requires small computational and communicational overheads. Moreover, the interactions between components are also considered in the proposed strategies. Hence, these strategies result in a solution that jointly considers all factors of heterogeneous LTE systems. Simulation results also show that our proposed strategies achieve much better performance than existing ones

    Pathwise Performance of Debt Based Policies for Wireless Networks with Hard Delay Constraints

    Full text link
    Hou et al have introduced a framework to serve clients over wireless channels when there are hard deadline constraints along with a minimum delivery ratio for each client's flow. Policies based on "debt," called maximum debt first policies (MDF) were introduced, and shown to be throughput optimal. By "throughput optimality" it is meant that if there exists a policy that fulfils a set of clients with a given vector of delivery ratios and a vector of channel reliabilities, then the MDF policy will also fulfill them. The debt of a user is the difference between the number of packets that should have been delivered so as to meet the delivery ratio and the number of packets that have been delivered for that client. The maximum debt first (MDF) prioritizes the clients in decreasing order of debts at the beginning of every period. Note that a throughput optimal policy only guarantees that \begin{small} \liminf_{T \to \infty} \frac{1}{T}\sum_{t=1}^{T} \mathbbm{1}\{\{client nspacketisdeliveredinframe's packet is delivered in frame t} \} \geq q_{i} \end{small}, where the right hand side is the required delivery ratio for client ii. Thus, it only guarantees that the debts of each user are o(T)o(T), and can be otherwise arbitrarily large. This raises the interesting question about what is the growth rate of the debts under the MDF policy. We show the optimality of MDF policy in the case when the channel reliabilities of all users are same, and obtain performance bounds for the general case. For the performance bound we obtain the almost sure bounds on lim suptdi(t)ϕ(t)\limsup_{t\to\infty}\frac{d_{i}(t)}{\phi(t)} for all ii, where ϕ(t)=2tloglogt\phi(t) = \sqrt{2t\log\log t}
    corecore