716 research outputs found

    The proton and neutron distribution in Na isotopes: the development of halo and shell structure

    Get PDF
    The interaction cross sections for ANa+12C^A Na + ^{12}C reaction are calculated using Glauber model. The continuum Hartree-Bogoliubov theory has been generalized to treat the odd particle system and take the continuum into account. The theory reproduces the experimental result quite well. The matter distributions from the proton drip line to the neutron drip line in Na isotopes have been systematically studied and presented. The relation between the shell effects and the halos has been examined. The tail of the matter distribution shows a strong dependence on the shell structure. The neutron N=28 closure shell fails to appear due to the coming down of the 2p3/22p_{3/2} and 2p1/22p_{1/2}. The development of the halo was understood as changes in the occupation in the next shell or the sub-shell close to the continuum limit. The central proton density is found to be decreasing near the neutron drip line, which is due to the proton-neutron interaction. However the diffuseness of the proton density does not change for the whole Na isotopes.Comment: 10 pages, 4 figure

    VEGF (Vascular Endothelial Growth Factor) Induces NRP1 (Neuropilin-1) Cleavage via ADAMs (a Disintegrin and Metalloproteinase) 9 and 10 to Generate Novel Carboxy- Terminal NRP1 Fragments That Regulate Angiogenic Signaling

    Get PDF
    OBJECTIVE: NRP1(neuropilin-1) acts as a coreceptor for VEGF (vascular endothelial growth factor) with an essential role in angiogenesis. Recent findings suggest that posttranslational proteolytic cleavage of VEGF receptors may be an important mechanism for regulating angiogenesis, but the role of NRP1 proteolysis and the NRP1 species generated by cleavage in endothelial cells is not known. To characterize NRP1 proteolytic cleavage in endothelial cells, determine the mechanism, and investigate the role of NRP1 cleavage in regulation of endothelial cell function. APPROACH AND RESULTS: NRP1 species comprising the carboxy (C)-terminal and transmembrane NRP1 domains but lacking the ligand-binding A and B regions are constitutively expressed in endothelial cells. Generation of these C-terminal domain NRP1 proteins is upregulated by phorbol ester and Ca2+ ionophore, and reduced by pharmacological inhibition of metalloproteinases, by small interfering RNA-mediated knockdown of 2 members of ADAM (a disintegrin and metalloproteinase) family, ADAMs 9 and 10, and by a specific ADAM10 inhibitor. Furthermore, VEGF upregulates expression of these NRP1 species in an ADAM9/10-dependent manner. Transduction of endothelial cells with adenoviral constructs expressing NRP1 C-terminal domain fragments inhibited VEGF-induced phosphorylation of VEGFR2 (VEGF receptor tyrosine kinase)/KDR and decreased VEGF-stimulated endothelial cell motility and angiogenesis in coculture and aortic ring sprouting assays. CONCLUSIONS: These findings identify novel NRP1 species in endothelial cells and demonstrate that regulation of NRP1 proteolysis via ADAMs 9 and 10 is a new regulatory pathway able to modulate VEGF angiogenic signaling

    Green's-function theory of the Heisenberg ferromagnet in a magnetic field

    Full text link
    We present a second-order Green's-function theory of the one- and two-dimensional S=1/2 ferromagnet in a magnetic field based on a decoupling of three-spin operator products, where vertex parameters are introduced and determined by exact relations. The transverse and longitudinal spin correlation functions and thermodynamic properties (magnetization, isothermal magnetic susceptibility, specific heat) are calculated self-consistently at arbitrary temperatures and fields. In addition, exact diagonalizations on finite lattices and, in the one-dimensional case, exact calculations by the Bethe-ansatz method for the quantum transfer matrix are performed. A good agreement of the Green's-function theory with the exact data, with recent quantum Monte Carlo results, and with the spin polarization of a ν=1\nu=1 quantum Hall ferromagnet is obtained. The field dependences of the position and height of the maximum in the temperature dependence of the susceptibility are found to fit well to power laws, which are critically analyzed in relation to the recently discussed behavior in Landau's theory. As revealed by the spin correlation functions and the specific heat at low fields, our theory provides an improved description of magnetic short-range order as compared with the random phase approximation. In one dimension and at very low fields, two maxima in the temperature dependence of the specific heat are found. The Bethe-ansatz data for the field dependences of the position and height of the low-temperature maximum are described by power laws. At higher fields in one and two dimensions, the temperature of the specific heat maximum linearly increases with the field.Comment: 9 pages, 9 figure

    Nuclear fission: The "onset of dissipation" from a microscopic point of view

    Get PDF
    Semi-analytical expressions are suggested for the temperature dependence of those combinations of transport coefficients which govern the fission process. This is based on experience with numerical calculations within the linear response approach and the locally harmonic approximation. A reduced version of the latter is seen to comply with Kramers' simplified picture of fission. It is argued that for variable inertia his formula has to be generalized, as already required by the need that for overdamped motion the inertia must not appear at all. This situation may already occur above T=2 MeV, where the rate is determined by the Smoluchowski equation. Consequently, comparison with experimental results do not give information on the effective damping rate, as often claimed, but on a special combination of local stiffnesses and the friction coefficient calculated at the barrier.Comment: 31 pages, LaTex, 9 postscript figures; final, more concise version, accepted for publication in PRC, with new arguments about the T-dependence of the inertia; e-mail: [email protected]

    Renormalization Group Technique Applied to the Pairing Interaction of the Quasi-One-Dimensional Superconductivity

    Full text link
    A mechanism of the quasi-one-dimensional (q1d) superconductivity is investigated by applying the renormalization group techniques to the pairing interaction. With the obtained renormalized pairing interaction, the transition temperature Tc and corresponding gap function are calculated by solving the linearized gap equation. For reasonable sets of parameters, Tc of p-wave triplet pairing is higher than that of d-wave singlet pairing due to the one-dimensionality of interaction. These results can qualitatively explain the superconducting properties of q1d organic conductor (TMTSF)2PF6 and the ladder compound Sr2Ca12Cu24O41.Comment: 18 pages, 9 figures, submitted to J. Phys. Soc. Jp

    Thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets in an external magnetic field within Green function formalism

    Full text link
    The thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets (HFM) in an external magnetic field is investigated within a second-order two-time Green function formalism in the wide temperature and field range. A crucial point of the proposed scheme is a proper account of the analytical properties for the approximate transverse commutator Green function obtained as a result of the decoupling procedure. A good quantitative description of the correlation functions, magnetization, susceptibility, and heat capacity of the HFM on a chain, square and triangular lattices is found for both infinite and finite-sized systems. The dependences of the thermodynamic functions of 2D HFM on the cluster size are studied. The obtained results agree well with the corresponding data found by Bethe ansatz, exact diagonalization, high temperature series expansions, and quantum Monte Carlo simulations.Comment: 11 pages, 14 figure

    Assessment of Technologies for Reducing CO2 Emission

    Get PDF
    There are a wide variety of technologies for reducing CO2 emissions, of which a greater part are those of energy technologies. The paper aims at assessing these technologies with regional differences of technology characteristics taken into account. The first part examines merits and demerits of individual technology, and thus envisages its possible future. The second part describes a global energy model, which generates comprehensive long term future scenarios of energy and CO2 emission in various regions of the world

    Definitive experimental evidence for two-band superconductivity in MgB2

    Full text link
    The superconducting gap of MgB2 has been studied by high-resolution angle-resolved photoemission spectroscopy (ARPES). The momentum(k)-resolving capability of ARPES enables us to identify the s- and p-orbital derived bands predicted from band structure calculations and to successfully measure the superconducting gap on each band. The results show that superconducting gaps with values of 5.5 meV and 2.2 meV open on the s-band and the p-band, respectively, but both the gaps close at the bulk transition temperature, providing a definitive experimental evidence for the two-band superconductivity in MgB2. The experiments validate the role of k-dependent electron-phonon coupling as the origin of multiple-gap superconductivity in MgB2.Comment: PDF file onl

    Machine Tools with an Enhanced Ball Screw Drive in Vertical Axis for Shaping of Micro Textures

    Get PDF
    Abstract This study describes a three-axes machine tool equipped with a fine motion device in the Z (vertical) axis. The machine motion is basically provided by ordinary ball screw drives. The synchronization of the fine motion with the XY motion to control the depth of cut can produce micro textures on a workpiece surface. First, the closed loop control of the fine motion was tested, and the frequency response was evaluated. Second, in order to improve the response, a second order digital filter was installed in the FF controller. The bandwidth was improved to 130 Hz at the amplitude of 500 nm. Finally, the evaluation in actual machining was conducted. A sweep-sine wave was machined with a diamond bite by the control of the depth of cut. From the experimental result, it was verified that the system properly provided the depth of cut at less than 100 Hz. Introduction In these days, demands are increasing for the machining of micro textures with the size of several hundred micrometers and the accuracy of sub-micrometers in the machining areas of optical parts and precision dies. For the control of the depth of cut in these applications, both the high frequency response with the resolution of ten nanometers and the synchronization with feed motions are required. The combination of an ultra-precision lathe and a fast tool servo system (FTS) has been used to fabricate the micro texture
    • …
    corecore