39 research outputs found

    Glucagon-Like Peptide-1 and its Analogues Act in the Dorsal Raphe and Modulate Central Serotonin to Reduce Appetite and Body Weight.

    Get PDF
    Glucagon-like peptide-1 (GLP-1) and serotonin play critical roles in energy balance regulation. Both systems are exploited clinically as anti-obesity strategies. Surprisingly whether they interact in order to regulate energy balance is poorly understood. Here we investigated mechanisms by which GLP-1 and serotonin interact at the level of the CNS. Serotonin depletion impaired the ability of exendin-4, a clinically utilized GLP-1 analogue, to reduce body weight in rats, suggesting serotonin is a critical mediator of the energy balance impact of GLP-1R activation. Serotonin turnover and expression of 5HT2A and 5HT2C serotonin receptors in the hypothalamus were altered by GLP-1R activation. We demonstrate that 5HT2A, but surprisingly not 5HT2C, receptor is critical for weight-loss, anorexia and fat mass reduction induced by central GLP-1R activation. Importantly, central 5HT2A receptors are also required for peripherally injected liraglutide to reduce feeding and weight. Dorsal raphe (DR) harbors cell bodies of serotonin producing neurons that supply serotonin to the hypothalamic nuclei. We show that GLP-1R stimulation in DR is sufficient to induce hypophagia and increase electrical activity of the DR serotonin neurons. Finally our results disassociate brain metabolic and emotionality pathways impacted by GLP-1R activation. This study identifies serotonin as new critical neural substrate for GLP-1 impact on energy homeostasis, and expands the current map of brain areas impacted by GLP-1R activation.This research was funded by the Swedish Research Council (2014-2945 and 2013-7107), Novo Nordisk Foundation Excellence project grant, Ragnar Söderberg Foundation, Harald Jeanssons Stiftelse and Greta Jeanssons Stiftelse, and Magnus Bergvalls Stiftelse

    Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion.

    Get PDF
    Hypoglycaemia (low plasma glucose) is a serious and potentially fatal complication of insulin-treated diabetes. In healthy individuals, hypoglycaemia triggers glucagon secretion, which restores normal plasma glucose levels by stimulation of hepatic glucose production. This counterregulatory mechanism is impaired in diabetes. Here we show in mice that therapeutic concentrations of insulin inhibit glucagon secretion by an indirect (paracrine) mechanism mediated by stimulation of intra-islet somatostatin release. Insulin's capacity to inhibit glucagon secretion is lost following genetic ablation of insulin receptors in the somatostatin-secreting δ-cells, when insulin-induced somatostatin secretion is suppressed by dapagliflozin (an inhibitor of sodium-glucose co-tranporter-2; SGLT2) or when the action of secreted somatostatin is prevented by somatostatin receptor (SSTR) antagonists. Administration of these compounds in vivo antagonises insulin's hypoglycaemic effect. We extend these data to isolated human islets. We propose that SSTR or SGLT2 antagonists should be considered as adjuncts to insulin in diabetes therapy

    Somatostatin secretion by Na+-dependent Ca2+-induced Ca2+ release in pancreatic delta-cells.

    Get PDF
    Pancreatic islets are complex micro-organs consisting of at least three different cell types: glucagon-secreting α-, insulin-producing β- and somatostatin-releasing δ-cells1. Somatostatin is a powerful paracrine inhibitor of insulin and glucagon secretion2. In diabetes, increased somatostatinergic signalling leads to defective counter-regulatory glucagon secretion3. This increases the risk of severe hypoglycaemia, a dangerous complication of insulin therapy4. The regulation of somatostatin secretion involves both intrinsic and paracrine mechanisms5 but their relative contributions and whether they interact remains unclear. Here we show that dapagliflozin-sensitive glucose- and insulin-dependent sodium uptake stimulates somatostatin secretion by elevating the cytoplasmic Na+ concentration ([Na+]i) and promoting intracellular Ca2+-induced Ca2+ release (CICR). This mechanism also becomes activated when [Na+]i is elevated following the inhibition of the plasmalemmal Na+-K+ pump by reductions of the extracellular K+ concentration emulating those produced by exogenous insulin in vivo6. Islets from some donors with type-2 diabetes hypersecrete somatostatin, leading to suppression of glucagon secretion that can be alleviated by a somatostatin receptor antagonist. Our data highlight the role of Na+ as an intracellular second messenger, illustrate the significance of the intraislet paracrine network and provide a mechanistic framework for pharmacological correction of the hormone secretion defects associated with diabetes that selectively target the δ-cells

    Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids

    Get PDF
    Caveolae have long been implicated in endocytosis. Recent data question this link, and in the absence of specific cargoes the potential cellular function of caveolar endocytosis remains unclear. Here we develop new tools, including doubly genome-edited cell lines, to assay the subcellular dynamics of caveolae using tagged proteins expressed at endogenous levels. We find that around 5% of the cellular pool of caveolae is present on dynamic endosomes, and is delivered to endosomes in a clathrin-independent manner. Furthermore, we show that caveolae are indeed likely to bud directly from the plasma membrane. Using a genetically encoded tag for electron microscopy and ratiometric light microscopy, we go on to show that bulk membrane proteins are depleted within caveolae. Although caveolae are likely to account for only a small proportion of total endocytosis, cells lacking caveolae show fundamentally altered patterns of membrane traffic when loaded with excess glycosphingolipid. Altogether, these observations support the hypothesis that caveolar endocytosis is specialized for transport of membrane lipid
    corecore