490 research outputs found
Porphyrin Layers at Cu/Au(111)–Electrolyte Interfaces: In Situ EC-STM Study
The coadsorption of porphyrin molecules (TMPyP: tetra(N-methyl-4-pyridyl)-porphyrin), sulfate anions and copper on a Au(111) electrode was investigated by the use of cyclic voltammetry (CV) and in situ electrochemical scanning tunneling microscopy. With decreasing electrode potential the following sequence of surface phases was found: (I) an ordered structure on the unreconstructed Au(111)-(1 × 1) surface; (II) a disordered SO42−-layer on the still unreconstructed Au(111)-(1 × 1); (III) a coadsorption structure of 2/3 ML Cu and 1/3 ML SO42−; (IV) a completed 1 ML Cu covered by a layer of mobile, i.e. not imaged, SO42− anions, moreover, a coadsorption layer of disordered porphyrin molecules and still mobile SO42− anions; (V) overpotentially deposited Cu-multilayers terminated by the well known Moire-type modulated structure (similar to bulk Cu(111)) and covered by a dense layer of flat lying TMPyP molecules showing a growing square as well as hexagonally ordered arrangement, and at even more negative potential values and low Cu concentrations in the solution (VI) a pseudomorphic underpotentially deposited Cu-monolayer covered by a layer and a dense, ordered porphyrin layer ontop. The formation of the various phases is driven by the potential dependent surface charge density and the resultant electrostatic interaction with the respective ions. A severe imbalance between the copper deposition and desorption current in the CV spectra suggests also the formation of CuTMPyP-metalloporphyrin on the surface which diffuses into the bulk solution
Halo detection via large-scale Bayesian inference
We present a proof-of-concept of a novel and fully Bayesian methodology
designed to detect halos of different masses in cosmological observations
subject to noise and systematic uncertainties. Our methodology combines the
previously published Bayesian large-scale structure inference algorithm, HADES,
and a Bayesian chain rule (the Blackwell-Rao Estimator), which we use to
connect the inferred density field to the properties of dark matter halos. To
demonstrate the capability of our approach we construct a realistic galaxy mock
catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a
median redshift of approximately 0.05. Application of HADES to the catalogue
provides us with accurately inferred three-dimensional density fields and
corresponding quantification of uncertainties inherent to any cosmological
observation. We then use a cosmological simulation to relate the amplitude of
the density field to the probability of detecting a halo with mass above a
specified threshold. With this information we can sum over the HADES density
field realisations to construct maps of detection probabilities and demonstrate
the validity of this approach within our mock scenario. We find that the
probability of successful of detection of halos in the mock catalogue increases
as a function of the signal-to-noise of the local galaxy observations. Our
proposed methodology can easily be extended to account for more complex
scientific questions and is a promising novel tool to analyse the cosmic
large-scale structure in observations.Comment: 17 pages, 13 figures. Accepted for publication in MNRAS following
moderate correction
Bayesian analysis of the low-resolution polarized 3-year WMAP sky maps
We apply a previously developed Gibbs sampling framework to the foreground
corrected 3-yr WMAP polarization data and compute the power spectrum and
residual foreground template amplitude posterior distributions. We first
analyze the co-added Q- and V-band data, and compare our results to the
likelihood code published by the WMAP team. We find good agreement, and thus
verify the numerics and data processing steps of both approaches. However, we
also analyze the Q- and V-bands separately, allowing for non-zero EB
cross-correlations and including two individual foreground template amplitudes
tracing synchrotron and dust emission. In these analyses, we find tentative
evidence of systematics: The foreground tracers correlate with each of the Q-
and V-band sky maps individually, although not with the co-added QV map; there
is a noticeable negative EB cross-correlation at l <~ 16 in the V-band map; and
finally, when relaxing the constraints on EB and BB, noticeable differences are
observed between the marginalized band powers in the Q- and V-bands. Further
studies of these features are imperative, given the importance of the low-l EE
spectrum on the optical depth of reionization tau and the spectral index of
scalar perturbations n_s.Comment: 5 pages, 4 figures, submitted to ApJ
Bayesian Power Spectrum Analysis of the First-Year WMAP data
We present the first results from a Bayesian analysis of the WMAP first year
data using a Gibbs sampling technique. Using two independent, parallel
supercomputer codes we analyze the WMAP Q, V and W bands. The analysis results
in a full probabilistic description of the information the WMAP data set
contains about the power spectrum and the all-sky map of the cosmic microwave
background anisotropies. We present the complete probability distributions for
each C_l including any non-Gaussianities of the power spectrum likelihood.
While we find good overall agreement with the previously published WMAP
spectrum, our analysis uncovers discrepancies in the power spectrum estimates
at low l multipoles. For example we claim the best-fit Lambda-CDM model is
consistent with the C_2 inferred from our combined Q+V+W analysis with a 10%
probability of an even larger theoretical C_2. Based on our exact analysis we
can therefore attribute the "low quadrupole issue" to a statistical
fluctuation.Comment: 5 pages. 4 figures. For additional information and data see
http://www.astro.uiuc.edu/~iodwyer/research#wma
Marginal distributions for cosmic variance limited CMB polarization data
We provide computationally convenient expressions for all marginal
distributions of the polarization CMB power spectrum distribution
P(C_l|sigma_l), where C_l = {C_l^TT, C_l^TE, C_l^EE, C_l^BB} denotes the set of
ensemble averaged polarization CMB power spectra, and sigma_l = {sigma_l^TT,
sigma_l^TE, sigma_l^EE, sigma_l^BB} the set of the realization specific
polarization CMB power spectra. This distribution describes the CMB power
spectrum posterior for cosmic variance limited data. The expressions derived
here are general, and may be useful in a wide range of applications. Two
specific applications are described in this paper. First, we employ the derived
distributions within the CMB Gibbs sampling framework, and demonstrate a new
conditional CMB power spectrum sampling algorithm that allows for different
binning schemes for each power spectrum. This is useful because most CMB
experiments have very different signal-to-noise ratios for temperature and
polarization. Second, we provide new Blackwell-Rao estimators for each of the
marginal polarization distributions, which are relevant to power spectrum and
likelihood estimation. Because these estimators represent marginals, they are
not affected by the exponential behaviour of the corresponding joint
expression, but converge quickly.Comment: 8 pages, 3 figures; minor adjustment, accepted for publication in
ApJ
A Markov Chain Monte Carlo Algorithm for analysis of low signal-to-noise CMB data
We present a new Monte Carlo Markov Chain algorithm for CMB analysis in the
low signal-to-noise regime. This method builds on and complements the
previously described CMB Gibbs sampler, and effectively solves the low
signal-to-noise inefficiency problem of the direct Gibbs sampler. The new
algorithm is a simple Metropolis-Hastings sampler with a general proposal rule
for the power spectrum, C_l, followed by a particular deterministic rescaling
operation of the sky signal. The acceptance probability for this joint move
depends on the sky map only through the difference of chi-squared between the
original and proposed sky sample, which is close to unity in the low
signal-to-noise regime. The algorithm is completed by alternating this move
with a standard Gibbs move. Together, these two proposals constitute a
computationally efficient algorithm for mapping out the full joint CMB
posterior, both in the high and low signal-to-noise regimes.Comment: Submitted to Ap
A re-analysis of the three-year WMAP temperature power spectrum and likelihood
We analyze the three-year WMAP temperature anisotropy data seeking to confirm
the power spectrum and likelihoods published by the WMAP team. We apply five
independent implementations of four algorithms to the power spectrum estimation
and two implementations to the parameter estimation. Our single most important
result is that we broadly confirm the WMAP power spectrum and analysis. Still,
we do find two small but potentially important discrepancies: On large angular
scales there is a small power excess in the WMAP spectrum (5-10% at l<~30)
primarily due to likelihood approximation issues between 13 <= l <~30. On small
angular scales there is a systematic difference between the V- and W-band
spectra (few percent at l>~300). Recently, the latter discrepancy was explained
by Huffenberger et al. (2006) in terms of over-subtraction of unresolved point
sources. As far as the low-l bias is concerned, most parameters are affected by
a few tenths of a sigma. The most important effect is seen in n_s. For the
combination of WMAP, Acbar and BOOMERanG, the significance of n_s =/ 1 drops
from ~2.7 sigma to ~2.3 sigma when correcting for this bias. We propose a few
simple improvements to the low-l WMAP likelihood code, and introduce two
important extensions to the Gibbs sampling method that allows for proper
sampling of the low signal-to-noise regime. Finally, we make the products from
the Gibbs sampling analysis publically available, thereby providing a fast and
simple route to the exact likelihood without the need of expensive matrix
inversions.Comment: 14 pages, 7 figures. Accepted for publication in ApJ. Numerical
results unchanged, but interpretation sharpened: Likelihood approximation
issues at l=13-30 far more important than potential foreground issues at l <=
12. Gibbs products (spectrum and sky samples, and "easy-to-use" likelihood
module) available from http://www.astro.uio.no/~hke/ under "Research
Halo detection via large-scale Bayesian inference
We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect
haloes of different masses in cosmological observations subject to noise and systematic uncertainties.
Our methodology combines the previously published Bayesian large-scale structure
inference algorithm, HAmiltonian Density Estimation and Sampling algorithm (HADES), and
a Bayesian chain rule (the Blackwell–Rao estimator), which we use to connect the inferred
density field to the properties of dark matter haloes. To demonstrate the capability of our
approach, we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree
Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES
to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding
quantification of uncertainties inherent to any cosmological observation. We then
use a cosmological simulation to relate the amplitude of the density field to the probability of
detecting a halo with mass above a specified threshold. With this information, we can sum over
the HADES density field realisations to construct maps of detection probabilities and demonstrate
the validity of this approach within our mock scenario. We find that the probability of
successful detection of haloes in the mock catalogue increases as a function of the signal to
noise of the local galaxy observations. Our proposed methodology can easily be extended to
account for more complex scientific questions and is a promising novel tool to analyse the
cosmic large-scale structure in observations.
Key words: methods: numerical – methods: statistical – galaxies: haloes – galaxies: clusters
Self-interacting Elko dark matter with an axis of locality
This communication is a natural and nontrivial continuation of the 2005 work
of Ahluwalia and Grumiller on Elko. Here we report that Elko breaks Lorentz
symmetry in a rather subtle and unexpected way by containing a `hidden'
preferred direction. Along this preferred direction, a quantum field based on
Elko enjoys locality. In the form reported here, Elko offers a mass dimension
one fermionic dark matter with a quartic self-interaction and a preferred axis
of locality. The locality result crucially depends on a judicious choice of
phases.Comment: 14 pages (RevTex
Estimation of Polarized Power Spectra by Gibbs sampling
Earlier papers introduced a method of accurately estimating the angular
cosmic microwave background (CMB) temperature power spectrum based on Gibbs
sampling. Here we extend this framework to polarized data. All advantages of
the Gibbs sampler still apply, and exact analysis of mega-pixel polarized data
sets is thus feasible. These advantages may be even more important for
polarization measurements than for temperature measurements. While approximate
methods can alias power from the larger E-mode spectrum into the weaker B-mode
spectrum, the Gibbs sampler (or equivalently, exact likelihood evaluations)
allows for a statistically optimal separation of these modes in terms of power
spectra. To demonstrate the method, we analyze two simulated data sets: 1) a
hypothetical future CMBPol mission, with the focus on B-mode estimation; and 2)
a Planck-like mission, to highlight the computational feasibility of the
method.Comment: 8 pages, 5 figures. High-resolution version available from
http://www.astro.uio.no/~hke/docs/larson_et_al_2006.ps.gz; accepted for
publication in Ap
- …