193 research outputs found

    Brane-bulk energy exchange : a model with the present universe as a global attractor

    Full text link
    The role of brane-bulk energy exchange and of an induced gravity term on a single braneworld of negative tension and vanishing effective cosmological constant is studied. It is shown that for the physically interesting cases of dust and radiation a unique global attractor which can realize our present universe (accelerating and 0<Omega_{m0}<1) exists for a wide range of the parameters of the model. For Omega_{m0}=0.3, independently of the other parameters, the model predicts that the equation of state for the dark energy today is w_{DE,0}=-1.4, while Omega_{m0}=0.03 leads to w_{DE,0}=-1.03. In addition, during its evolution, w_{DE} crosses the w_{DE}=-1 line to smaller values.Comment: 8 pages, 2 figures, RevTex; references added, to appear in JHE

    Roles of SiH4 in growth, structural changes and optical properties of nanocrystalline silicon thin films

    Get PDF
    金沢大学理工研究域電子情報通信学系Nanocrystalline silicon (ns-Si) thin films deposited through plasma-enhanced chemical vapor deposition technique were studied. These films were grown at low deposition temperature of 200°C and at different silane flow rates ([SiH4]). Characterization of these films with Raman spectroscopy, x-ray diffraction and atomic force microscopy revealed that no films deposited at [SiH4]=0.0sccm. In addition, the structural change from an amorphous to a nanocrystalline phase at [SiH4]=0.2sccm. The Fourier transform infrared spectroscopic analysis showed at low values of [SiH4](0.1sccm), no hydrogen incorporated in the nc-Si thin film. However, the intensity of the spectra around 2100 cm-1 is likely to decreases with increasing [SiH4]. We have observed photoluminescence (PL) at room temperature in the range of 1.7 eV to 2.4 eV for all the films. Presence of the very small crystallites (the size less than 20 nm) responsible for quantum confinement effect. Variations of the PL intensity, width and position are well correlation with the structural properties of the films such as crystalline size, crystalline volume fraction, and hydrogen content. Furthermore, the PL emissions also showed correlation with the distribution of spherical grains with the size below 50 nm distributed on the films surface. © 2011 American Institute of Physics.Conference Pape

    Super-acceleration on the Brane by Energy Flow from the Bulk

    Full text link
    We consider a brane cosmological model with energy exchange between brane and bulk. Parameterizing the energy exchange term by the scale factor and Hubble parameter, we are able to exactly solve the modified Friedmann equation on the brane. In this model, the equation of state for the effective dark energy has a transition behavior changing from wdeeff>1w_{de}^{eff}>-1 to wdeeff<1w_{de}^{eff}<-1, while the equation of state for the dark energy on the brane has w>1w>-1. Fitting data from type Ia supernova, Sloan Digital Sky Survey and Wilkinson Microwave Anisotropy Probe, our universe is predicted now in the state of super-acceleration with wde0eff=1.21w_{de0}^{eff}=-1.21.Comment: Revtex, 11 pages including 2 figures,v2: tpos fixed, references added, to appear in JCA

    Dimensionless cosmology

    Full text link
    Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant GG is entirely dimensionful. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of Big Bang Neucleosynthesis and recombination in a dimensionless manner. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any {\it one} of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding GG to the usual cosmological parameter set

    DNA End Resection Controls the Balance between Homologous and Illegitimate Recombination in Escherichia coli

    Get PDF
    Even a partial loss of function of human RecQ helicase analogs causes adverse effects such as a cancer-prone Werner, Bloom or Rothmund-Thompson syndrome, whereas a complete RecQ deficiency in Escherichia coli is not deleterious for a cell. We show that this puzzling difference is due to different mechanisms of DNA double strand break (DSB) resection in E. coli and humans. Coupled helicase and RecA loading activities of RecBCD enzyme, which is found exclusively in bacteria, are shown to be responsible for channeling recombinogenic 3′ ending tails toward productive, homologous and away from nonproductive, aberrant recombination events. On the other hand, in recB1080/recB1067 mutants, lacking RecBCD’s RecA loading activity while preserving its helicase activity, DSB resection is mechanistically more alike that in eukaryotes (by its uncoupling from a recombinase polymerization step), and remarkably, the role of RecQ also becomes akin of its eukaryotic counterparts in a way of promoting homologous and suppressing illegitimate recombination. The sickly phenotype of recB1080 recQ mutant was further exacerbated by inactivation of an exonuclease I, which degrades the unwound 3′ tail. The respective recB1080 recQ xonA mutant showed poor viability, DNA repair and homologous recombination deficiency, and very increased illegitimate recombination. These findings demonstrate that the metabolism of the 3′ ending overhang is a decisive factor in tuning the balance of homologous and illegitimate recombination in E. coli, thus highlighting the importance of regulating DSB resection for preserving genome integrity. recB mutants used in this study, showing pronounced RecQ helicase and exonuclease I dependence, make up a suitable model system for studying mechanisms of DSB resection in bacteria. Also, these mutants might be useful for investigating functions of the conserved RecQ helicase family members, and congruently serve as a simpler, more defined model system for human oncogenesis

    LPA5 Is Abundantly Expressed by Human Mast Cells and Important for Lysophosphatidic Acid Induced MIP-1β Release

    Get PDF
    Background: Lysophosphatidic acid (LPA) is a bioactive lipid inducing proliferation, differentiation as well as cytokine release by mast cells through G-protein coupled receptors. Recently GPR92/LPA5 was identified as an LPA receptor highly expressed by cells of the immune system, which prompted us to investigate its presence and influence on mast cells. Principal Findings: Transcript analysis using quantitative real-time PCR revealed that LPA5 is the most prevalent LPA-receptor in human mast cells. Reduction of LPA5 levels using shRNA reduced calcium flux and abolished MIP-1β release in response to LPA. Conclusions: LPA5 is a bona fide LPA receptor on human mast cells responsible for the majority of LPA induced MIP-1β release
    corecore