7 research outputs found

    Regulation of Contractility by Adenosine A\u3csub\u3e1\u3c/sub\u3e and A\u3csub\u3e2A\u3c/sub\u3e Receptors in the Murine Heart: Role of Protein Phosphatase 2A: A Dissertation

    Get PDF
    Adenosine is a nucleoside that plays an important role in the regulation of contractility in the heart. Adenosine receptors are G-protein coupled and those implicated in regulation of contractility are presumed to act via modulating the activity of adenylyl cyclase and cAMP content of cardiomyocytes. Adenosine A1 receptors (A1R) reduce the contractile response of the myocardium to β-adrenergic stimulation. This is known as anti adrenergic action. The A2A adenosine receptor (A2AR) has the opposite effect of increasing contractile responsiveness of the myocardium. The A2AR also appears to attenuate the effects of A1R. The effects of these receptors have been primarily studied in the rat heart and with the utilization of cardiomyocyte preparations. With the increasing use of receptor knockout murine models and murine models of various pathological states, it is of importance to comprehensively study the effects of adenosine receptors on regulation of contractility in the murine heart. The following studies examine the adenosinergic regulation of myocardial contractility in isolated murine hearts. In addition, adenosinergic control of contractility is examined in hearts isolated from A2AR knockout animals. Responses to adenosinergic stimulation in murine isolated hearts are found to be comparable to those observed in the rat, with A1R exhibiting an anti adrenergic action and A2AR conversely enhancing contractility. A significant part of the A2AR effect was found to occur via inhibition of the A1R antiadrenergic action. A part of the anti adrenergic action of A1R has previously been shown to be the result of protein phosphatase 2A activation and localization to membranes. Additional experiments in the present study examine the effect of adenosinergic signaling on PP2A in myocardial extracts from wild type and A2AR knockout hearts. A2AR activation was found to decrease the activity of PP2A and enhance localization of the active enzyme to the cytosol; away from its presumed sites of action. In the A2AR knockout the response to A1R activation was enhanced compared with the wild type and basal PP2A activity was reduced. It is concluded that A2AR modulation of PP2A activity may account for the attenuation of the A1R effect by A2AR observed in the contractile studies

    Contractile effects of adenosine A1 and A2A receptors in isolated murine hearts

    No full text
    The adenosine A1 receptor (A1R) inhibits beta-adrenergic-induced contractile effects (antiadrenergic action), and the adenosine A2A receptor (A2AR) both opposes the A1R action and enhances contractility in the heart. This study investigated the A1R and A2AR function in beta-adrenergic-stimulated, isolated wild-type and A2AR knockout murine hearts. Constant flow and pressure perfused preparations were employed, and the maximal rate of left ventricular pressure (LVP) development (+dp/dt(max)) was used as an index of cardiac function. A1R activation with 2-chloro-N6-cyclopentyladenosine (CCPA) resulted in a 27% reduction in contractile response to the beta-adrenergic agonist isoproterenol (ISO). Stimulation of A2AR with 2-P(2-carboxyethyl)phenethyl-amino-5\u27-N-ethylcarboxyamidoadenosine (CGS-21680) attenuated this antiadrenergic effect, resulting in a partial (constant flow preparation) or complete (constant pressure preparation) restoration of the ISO contractile response. These effects of A2AR were absent in knockout hearts. Up to 63% of the A2AR influence was estimated to be mediated through its inhibition of the A1R antiadrenergic effect, with the remainder being the direct contractile effect. Further experiments examined the effects of A2AR activation and associated vasodilation with low-flow ischemia in the absence of beta-adrenergic stimulation. A2AR activation reduced by 5% the depression of contractile function caused by the flow reduction and also increased contractile performance over a wide range of perfusion flows. This effect was prevented by the A2AR antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]et hyl)phenol (ZM-241385). It is concluded that in the murine heart, A1R and A2AR modulate the response to beta-adrenergic stimulation with A2AR, attenuating the effects of A1R and also increasing contractility directly. In addition, A2AR supports myocardial contractility in a setting of low-flow ischemia

    Contractile effects of adenosine A 1

    No full text

    Adenosine A1 and A2A receptor regulation of protein phosphatase 2A in the murine heart

    No full text
    Adenosine plays a role in regulating the contractile function of the heart. This includes a positive ionotropic action via the adenosine A(2A) receptor (A(2A)R) and an inhibition of beta(1)-adrenergic receptor-induced ionotropy (antiadrenergic action) via the adenosine A(1) receptor (A(1)R). Phosphatase activity has also been shown to influence contractile function by affecting the level of protein phosphorylation. Protein phosphatase 2A (PP2A) plays a significant role in mediating the A(1)R antiadrenergic effect. The purpose of this study was to investigate the effects of A(2A)R and A(1)R on the activities of PP2A in hearts obtained from wild-type (WT) and A(2A)R knockout (A(2A)R-KO) mice. PP2A activities were examined in myocardial particulate and cytoplasmic extract fractions. Treatment of wild-type hearts with the A(1)R agonist CCPA increased the total PP2A activity and increased the particulate:cytoplasmic PP2A activity ratio. Treatment with the A(2A)R agonist CGS-21680 (CGS) decreased the total PP2A activity and decreased the particulate:cytoplasmic PP2A activity ratio. This indicated a movement of PP2A activity between cell fractions. The effect of CCPA was inhibited by CGS. In A(2A)R-KO hearts the response to A(1)R activation was markedly enhanced whereas the response to A(2A)R activation was absent. These data show that A(2A)R and A(1)R regulate PP2A activity, thus suggesting an important mechanism for modulating myocardial contractility

    Regulation of PP2AC carboxylmethylation and cellular localisation by inhibitory Class G-Protein coupled receptors in cardiomyocytes

    Get PDF
    The enzymatic activity of the type 2A protein phosphatase (PP2A) holoenzyme, a major serine/threonine phosphatase in the heart, is conferred by its catalytic subunit (PP2AC). PP2AC activity and subcellular localisation can be regulated by reversible carboxylmethylation of its C-terminal leucine309 (leu309) residue. Previous studies have shown that the stimulation of adenosine type 1 receptors (A1.Rs) induces PP2AC carboxylmethylation and altered subcellular distribution in adult rat ventricular myocytes (ARVM). In the current study, we show that the enzymatic components that regulate the carboxylmethylation status of PP2AC, leucine carboxylmethyltransferase-1 (LCMT-1) and phosphatase methylesterase-1 (PME-1) are abundantly expressed in, and almost entirely localised in the cytoplasm of ARVM. The stimulation of Gi-coupled A1.Rs with N(6)-cyclopentyladenosine (CPA), and of other Gi-coupled receptors such as muscarinic M2 receptors (stimulated with carbachol) and angiotensin II AT2 receptors (stimulated with CGP42112) in ARVM, induced PP2AC carboxylmethylation at leu309 in a concentration-dependent manner. Exposure of ARVM to 10 µM CPA increased the cellular association between PP2AC and its methyltransferase LCMT-1, but not its esterase PME-1. Stimulation of A1.Rs with 10 µM CPA increased the phosphorylation of protein kinase B at ser473, which was abolished by the PI3K inhibitor LY294002 (20 µM), thereby confirming that PI3K activity is upregulated in response to A1.R stimulation by CPA in ARVM. A1.R-induced PP2AC translocation to the particulate fraction was abrogated by adenoviral expression of the alpha subunit (Gαt1) coupled to the transducin G-protein coupled receptor. A similar inhibitory effect on A1.R-induced PP2AC translocation was also seen with LY294002 (20 µM). These data suggest that in ARVM, A1.R-induced PP2AC translocation to the particulate fraction occurs through a GiPCR-Gβγ-PI3K mediated intracellular signalling pathway, which may involve elevated PP2AC carboxylmethylation at leu309
    corecore