36 research outputs found

    Functional Analysis and Molecular Dynamics Simulation of LOX-1 K167N Polymorphism Reveal Alteration of Receptor Activity

    Get PDF
    The human lectin-like oxidized low density lipoprotein receptor 1 LOX-1, encoded by the ORL1 gene, is the major scavenger receptor for oxidized low density lipoprotein in endothelial cells. Here we report on the functional effects of a coding SNP, c.501G>C, which produces a single amino acid change (K>N at codon 167). Our study was aimed at elucidating whether the c.501G>C polymorphism changes the binding affinity of LOX-1 receptor altering its function. The presence of p.K167N mutation reduces ox-LDL binding and uptake. Ox-LDL activated extracellular signal-regulated kinases 1 and 2 (ERK 1/2) is inhibited. Furthermore, ox-LDL induced biosynthesis of LOX-1 receptors is dependent on the p.K167N variation. In human macrophages, derived from c.501G>C heterozygous individuals, the ox-LDL induced LOX-1 46 kDa band is markedly lower than in induced macrophages derived from c.501G>C controls. Investigation of p.K167N mutation through molecular dynamics simulation and electrostatic analysis suggests that the ox-LDL binding may be attributed to the coupling between the electrostatic potential distribution and the asymmetric flexibility of the basic spine residues. The N/N-LOX-1 mutant has either interrupted electrostatic potential and asymmetric fluctuations of the basic spine arginines

    Transgenic overexpression of miR-133a in skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a class of non-coding regulatory RNAs of ~22 nucleotides in length. miRNAs regulate gene expression post-transcriptionally, primarily by associating with the 3' untranslated region (UTR) of their regulatory target mRNAs. Recent work has begun to reveal roles for miRNAs in a wide range of biological processes, including cell proliferation, differentiation and apoptosis. Many miRNAs are expressed in cardiac and skeletal muscle, and dysregulated miRNA expression has been correlated with muscle-related disorders. We have previously reported that the expression of muscle-specific miR-1 and miR-133 is induced during skeletal muscle differentiation and miR-1 and miR-133 play central regulatory roles in myoblast proliferation and differentiation in vitro.</p> <p>Methods</p> <p>In this study, we measured the expression of miRNAs in the skeletal muscle of mdx mice, an animal model for human muscular dystrophy. We also generated transgenic mice to overexpress miR-133a in skeletal muscle.</p> <p>Results</p> <p>We examined the expression of miRNAs in the skeletal muscle of <it>mdx </it>mice. We found that the expression of muscle miRNAs, including miR-1a, miR-133a and miR-206, was up-regulated in the skeletal muscle of <it>mdx </it>mice. In order to further investigate the function of miR-133a in skeletal muscle in vivo, we have created several independent transgenic founder lines. Surprisingly, skeletal muscle development and function appear to be unaffected in miR-133a transgenic mice.</p> <p>Conclusions</p> <p>Our results indicate that miR-133a is dispensable for the normal development and function of skeletal muscle.</p

    Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare the microRNA (miRNA) expression profiles in neurons and innervated muscles after sciatic nerve entrapment using a non-constrictive silastic tube, subsequent surgical decompression, and denervation injury.</p> <p>Methods</p> <p>The experimental L4-L6 spinal segments, dorsal root ganglia (DRGs), and soleus muscles from each experimental group (sham control, denervation, entrapment, and decompression) were analyzed using an Agilent rat miRNA array to detect dysregulated miRNAs. In addition, muscle-specific miRNAs (miR-1, -133a, and -206) and selectively upregulated miRNAs were subsequently quantified using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR).</p> <p>Results</p> <p>In the soleus muscles, 37 of the 47 miRNAs (13.4% of the 350 unique miRNAs tested) that were significantly downregulated after 6 months of entrapment neuropathy were also among the 40 miRNAs (11.4% of the 350 unique miRNAs tested) that were downregulated after 3 months of decompression. No miRNA was upregulated in both groups. In contrast, only 3 miRNAs were upregulated and 3 miRNAs were downregulated in the denervated muscle after 6 months. In the DRGs, 6 miRNAs in the entrapment group (miR-9, miR-320, miR-324-3p, miR-672, miR-466b, and miR-144) and 3 miRNAs in the decompression group (miR-9, miR-320, and miR-324-3p) were significantly downregulated. No miRNA was upregulated in both groups. We detected 1 downregulated miRNA (miR-144) and 1 upregulated miRNA (miR-21) after sciatic nerve denervation. We were able to separate the muscle or DRG samples into denervation or entrapment neuropathy by performing unsupervised hierarchal clustering analysis. Regarding the muscle-specific miRNAs, real-time RT-PCR analysis revealed an ~50% decrease in miR-1 and miR-133a expression levels at 3 and 6 months after entrapment, whereas miR-1 and miR-133a levels were unchanged and were decreased after decompression at 1 and 3 months. In contrast, there were no statistical differences in the expression of miR-206 during nerve entrapment and after decompression. The expression of muscle-specific miRNAs in entrapment neuropathy is different from our previous observations in sciatic nerve denervation injury.</p> <p>Conclusions</p> <p>This study revealed the different involvement of miRNAs in neurons and innervated muscles after entrapment neuropathy and denervation injury, and implied that epigenetic regulation is different in these two conditions.</p

    MicroRNA profiling in ischemic injury of the gracilis muscle in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To profile the expression of microRNAs (miRNAs) and their potential target genes in the gracilis muscles following ischemic injury in rats by monitoring miRNA and mRNA expression on a genome-wide basis.</p> <p>Methods</p> <p>Following 4 h of ischemia and subsequent reperfusion for 4 h of the gracilis muscles, the specimens were analyzed with an Agilent rat miRNA array to detect the expressed miRNAs in the experimental muscles compared to those from the sham-operated controls. Their expressions were subsequently quantified by real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to determine their expression pattern after different durations of ischemia and reperfusion. In addition, the expression of the mRNA in the muscle specimens after 4 h of ischemia and reperfusion for 1, 3, 7, and 14 d were detected with the Agilent Whole Rat Genome 4 Γ— 44 k oligo microarray. A combined approach using a computational prediction algorithm that included miRanda, PicTar, TargetScanS, MirTarget2, RNAhybrid, and the whole genome microarray experiment was performed by monitoring the mRNA:miRNA association to identify potential target genes.</p> <p>Results</p> <p>Three miRNAs (miR-21, miR-200c, and miR-205) of 350 tested rat miRNAs were found to have an increased expression in the miRNA array. Real-time RT-PCR demonstrated that, with 2-fold increase after 4 h of ischemia, a maximum 24-fold increase at 7 d, and a 7.5-fold increase at 14 d after reperfusion, only the miR-21, but not the miR-200c or miR-205 was upregulated throughout the experimental time. In monitoring the target genes of miR-21 in the expression array at 1, 3, 7, 14 d after reperfusion, with persistent expression throughout the experiment, we detected the same 4 persistently downregulated target genes (<it>Nqo1</it>, <it>Pdpn</it>, <it>CXCL3</it>, and <it>Rad23b</it>) with the prediction algorithms miRanda and RNAhybrid, but no target gene was revealed with PicTar, TargetScanS, and MirTarget2.</p> <p>Conclusions</p> <p>This study revealed 3 upregulated miRNAs in the gracilis muscle following ischemic injury and identified 4 potential target genes of miR-21 by examining miRNAs and mRNAs expression patterns in a time-course fashion using a combined approach with prediction algorithms and a whole genome expression array experiment.</p

    miRNAs at the heart of the matter

    Get PDF
    Cardiovascular disease is among the main causes of morbidity and mortality in developed countries. The pathological process of the heart is associated with altered expression profile of genes that are important for cardiac function. MicroRNAs (miRNAs) have emerged as one of the central players of gene expression regulation. The implications of miRNAs in the pathological process of cardiovascular system have recently been recognized, representing the most rapidly evolving research field. Here, we summarize and analyze the currently available data from our own laboratory and other groups, providing a comprehensive overview of miRNA function in the heart, including a brief introduction of miRNA biology, expression profile of miRNAs in cardiac tissue, role of miRNAs in cardiac hypertrophy and heart failure, the arrhythmogenic potential of miRNAs, the involvement of miRNAs in vascular angiogenesis, and regulation of cardiomyocyte apoptosis by miRNAs. The target genes and signaling pathways linking the miRNAs to cardiovascular disease are highlighted. The applications of miRNA interference technologies for manipulating miRNA expression, stability, and function as new strategies for molecular therapy of human disease are evaluated. Finally, some specific issues related to future directions of the research on miRNAs relevant to cardiovascular disease are pinpointed and speculated

    Cancer-Stromal Cell Interaction and Tumor Angiogenesis in Gastric Cancer

    Get PDF
    Recent studies in molecular and cellular biology have shown that tumor growth and metastasis are not determined by cancer cells alone but also by a variety of stromal cells. The stroma constitutes a large part of most solid tumors, and cancer-stromal cell interaction contributes functionally to tumor growth and metastasis. Angiogenesis is the result of an imbalance between positive and negative angiogenic factors released by tumor and host cells into the microenvironment of the neoplastic tissue. In gastric cancer, tumor cells and stromal cells produce various angiogenic factors, including vascular endothelial growth factor, interleukin-8, and platelet-derived endothelial cell growth factor. The microenvironment in the gastric mucosa may also influence the angiogenic phenotype of gastric cancer. Helicobacter pylori infection increases expression of several angiogenic factors by tumor cells. Activated fibroblasts and macrophages in tumor stroma also play an important role in angiogenesis and tumor progression. We review the current understanding of cancer-stromal cell interaction as it pertains to tumor angiogenesis in gastric cancer

    The Discovery of LOX-1, its Ligands and Clinical Significance

    Get PDF
    LOX-1 is an endothelial receptor for oxidized low-density lipoprotein (oxLDL), a key molecule in the pathogenesis of atherosclerosis.The basal expression of LOX-1 is low but highly induced under the influence of proinflammatory and prooxidative stimuli in vascular endothelial cells, smooth muscle cells, macrophages, platelets and cardiomyocytes. Multiple lines of in vitro and in vivo studies have provided compelling evidence that LOX-1 promotes endothelial dysfunction and atherogenesis induced by oxLDL. The roles of LOX-1 in the development of atherosclerosis, however, are not simple as it had been considered. Evidence has been accumulating that LOX-1 recognizes not only oxLDL but other atherogenic lipoproteins, platelets, leukocytes and CRP. As results, LOX-1 not only mediates endothelial dysfunction but contributes to atherosclerotic plaque formation, thrombogenesis, leukocyte infiltration and myocardial infarction, which determine mortality and morbidity from atherosclerosis. Moreover, our recent epidemiological study has highlighted the involvement of LOX-1 in human cardiovascular diseases. Further understandings of LOX-1 and its ligands as well as its versatile functions will direct us to ways to find novel diagnostic and therapeutic approaches to cardiovascular disease
    corecore