17,305 research outputs found

    Fitting EXAFS data using molecular dynamics outputs and a histogram approach

    No full text
    The estimation of metal nanoparticle diameter by analysis of extended x-ray absorption fine structure (EXAFS) data from coordination numbers is nontrivial, particularly for particles <5 nm in diameter, for which the undercoordination of surface atoms becomes an increasingly significant contribution to the average coordination number. These undercoordinated atoms have increased degrees of freedom over those within the core of the particle, which results in an increase in the degree of structural disorder with decreasing particle size. This increase in disorder, however, is not accounted for by the standard means of EXAFS analysis, where each coordination shell is fitted with a single bond length and disorder term. In addition, the surface atoms of nanoparticles have been observed to undergo a greater contraction than those in the core, further increasing the range of bond distances. Failure to account for this structural change results in an increased disorder being measured, and therefore, a lower apparent coordination number and corresponding particle size are found. Here, we employ molecular dynamics (MD) simulations for a range of nanoparticle sizes to determine each of the nearest neighbor bond lengths, which were then binned into a histogram to construct a radial distribution function (RDF). Each bin from the histogram was considered to be a single scattering path and subsequently used in fitting the EXAFS data obtained for a series of carbon-supported platinum nanoparticles. These MD-based fits are compared with those obtained using a standard fitting model using Artemis and the standard model with the inclusion of higher cumulants, which has previously been used to account for the non-Gaussian distribution of neighboring atoms around the absorber. The results from all three fitting methods were converted to particle sizes and compared with those obtained from transmission electron microscopy (TEM) and x-ray diffraction (XRD) measurements. We find that the use of molecular dynamics simulations resulted in an improved fit over both the standard and cumulant models, in terms of both quality of fit and correlation with the known average particle size

    Study of the April 20, 2007 CME-Comet Interaction Event with an MHD Model

    Full text link
    This study examines the tail disconnection event on April 20, 2007 on comet 2P/Encke, caused by a coronal mass ejection (CME) at a heliocentric distance of 0.34 AU. During their interaction, both the CME and the comet are visible with high temporal and spatial resolution by the STEREO-A spacecraft. Previously, only current sheets or shocks have been accepted as possible reasons for comet tail disconnections, so it is puzzling that the CME caused this event. The MHD simulation presented in this work reproduces the interaction process and demonstrates how the CME triggered a tail disconnection in the April 20 event. It is found that the CME disturbs the comet with a combination of a 180∘180^\circ sudden rotation of the interplanetary magnetic field (IMF), followed by a 90∘90^\circ gradual rotation. Such an interpretation applies our understanding of solar wind-comet interactions to determine the \textit{in situ} IMF orientation of the CME encountering Encke.Comment: 13 pages, 3 figures, accepted by the ApJ Letter

    X-ray Modeling of \eta\ Carinae and WR140 from SPH Simulations

    Full text link
    The colliding wind binary (CWB) systems \eta\ Carinae and WR140 provide unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, including RXTE. To interpret these RXTE X-ray light curves, we model the wind-wind collision using 3D smoothed particle hydrodynamics (SPH) simulations. Adiabatic simulations that account for the absorption of X-rays from an assumed point source at the apex of the wind-collision shock cone by the distorted winds can closely match the observed 2-10keV RXTE light curves of both \eta\ Car and WR140. This point-source model can also explain the early recovery of \eta\ Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4 reduction in the mass loss rate of \eta\ Car. Our more recent models relax the point-source approximation and account for the spatially extended emission along the wind-wind interaction shock front. For WR140, the computed X-ray light curve again matches the RXTE observations quite well. But for \eta\ Car, a hot, post-periastron bubble leads to an emission level that does not match the extended X-ray minimum observed by RXTE. Initial results from incorporating radiative cooling and radiatively-driven wind acceleration via a new anti-gravity approach into the SPH code are also discussed.Comment: 5 pages, 3 figures, Proceedings of the 39th Li\'ege Astrophysical Colloquium, held in Li\`ege 12-16 July 2010, edited by G. Rauw, M. De Becker, Y. Naz\'e, J.-M. Vreux, P. William

    Semi-Classical Description of Antiproton Capture on Atomic Helium

    Full text link
    A semi-classical, many-body atomic model incorporating a momentum-dependent Heisenberg core to stabilize atomic electrons is used to study antiproton capture on Helium. Details of the antiproton collisions leading to eventual capture are presented, including the energy and angular momentum states of incident antiprotons which result in capture via single or double electron ionization, i.e. into [He++ pˉ^{++}\,\bar p or He+ pˉ^{+}\,\bar p], and the distribution of energy and angular momentum states following the Auger cascade. These final states are discussed in light of recently reported, anomalously long-lived antiproton states observed in liquid He.Comment: 15 pages, 9 figures may be obtained from authors, Revte

    Pyrophosphate: a key inhibitor of mineralisation

    Get PDF
    Inorganic pyrophosphate has long been known as a by-product of many intracellular biosynthetic reactions, and was first identified as a key endogenous inhibitor of biomineralisation in the 1960s. The major source of pyrophosphate appears to be extracellular ATP, which is released from cells in a controlled manner. Once released, ATP can be rapidly hydrolysed by ecto-nucleotide pyrophosphatase/phosphodiesterases to produce pyrophosphate. The main action of pyrophosphate is to directly inhibit hydroxyapatite formation thereby acting as a physiological 'water-softener'. Evidence suggests pyrophosphate may also act as a signalling molecule to influence gene expression and regulate its own production and breakdown. This review will summarise our current understanding of pyrophosphate metabolism and how it regulates bone mineralisation and prevents harmful soft tissue calcification

    Anisotropic s-wave superconductivity in single crystals CaAlSi from penetration depth measurements

    Full text link
    In- and out-of-plane London penetration depths were measured in single crystals CaAlSi (T_{c}=6.2 K and 7.3 K) using a tunnel-diode resonator. A full 3D BCS analysis of the superfluid density is consistent with a prolate spheroidal gap, with a weak-coupling BCS value in the ab-plane and stronger coupling along the c-axis. The gap anisotropy was found to significantly decrease for higher T_{c} samples.Comment: 4 page

    Testing Australian standard consumers' understanding of the language used to describe wine

    Get PDF
    With reference to 64 common descriptors of the sensory properties of wine (e.g., tannic, full-bodied, etc.), we investigated the extent to which these terms are understood by Australian standard consumers in relation to an opposite property (i.e., as happens in the case of experts). The study also determined how consistently these dimensions were among the group of participants. The results confirmed that the sensorial dimensions relating to wine can be modeled in terms of opposites for standard wine consumers in more than 80% of cases. However, there was a great deal of variability between the properties in terms of the opposites which were elicited indicating that some terms are less open to ambiguity while others are associated with many different opposites. A comparison of the results with those from similar studies with Italian and Vietnamese participants is addressed in the final section. Practical Applications The aim of the study was to replicate previous research conducted with Italian participants, but in this case involving Australian participants, with a view to compare participants from a traditional wine-producing country with those from a relatively newly established wine-producing country. A similar study had already been carried out with Vietnamese participants, that is, with consumers from a country with less familiarity with grape wines. The importance of this study rests on the fact that English is one of the most commonly spoken languages in the world and, as such, the study represents a relevant evolution of the original research. Opposites seem to be a useful point of reference for standard consumers in all of these countries in terms of their understanding of the terms used to describe wine. This and the fact that there seems to be a certain degree of uncertainty regarding people's understanding of many of these terms indicate that it may be necessary to reconceptualize the sensory dimensions relating to wine. From a practical point of view, this is certainly of interest to wine producers since it can help in the marketing of their products

    Extreme State Aggregation Beyond MDPs

    Full text link
    We consider a Reinforcement Learning setup where an agent interacts with an environment in observation-reward-action cycles without any (esp.\ MDP) assumptions on the environment. State aggregation and more generally feature reinforcement learning is concerned with mapping histories/raw-states to reduced/aggregated states. The idea behind both is that the resulting reduced process (approximately) forms a small stationary finite-state MDP, which can then be efficiently solved or learnt. We considerably generalize existing aggregation results by showing that even if the reduced process is not an MDP, the (q-)value functions and (optimal) policies of an associated MDP with same state-space size solve the original problem, as long as the solution can approximately be represented as a function of the reduced states. This implies an upper bound on the required state space size that holds uniformly for all RL problems. It may also explain why RL algorithms designed for MDPs sometimes perform well beyond MDPs.Comment: 28 LaTeX pages. 8 Theorem
    • …
    corecore