395 research outputs found

    Electronic Instrumentation

    Get PDF
    Contains research objectives andNational Institutes of Health (Grant 5 505 FR-07047-03

    Electronic Instrumentation

    Get PDF
    Contains reports on status of research and three research projects.National Institutes of Health (Grant 1 505 FR07047-01)Electronic Instrumentation Group of the Research Laboratory of Electronics in research under NIH Grant 1 505 FR07047-0

    A Comprehensive Emission Inventory of Bbiogenic Volatile Organic Compounds in Europe: Improved Seasonality and Land-cover

    Get PDF
    Biogenic volatile organic compounds (BVOC) emitted from vegetation are important for the formation of secondary pollutants such as ozone and secondary organic aerosols (SOA) in the atmosphere. Therefore, BVOC emission are an important input for air quality models. To model these emissions with high spatial resolution, the accuracy of the underlying vegetation inventory is crucial. We present a BVOC emission model that accommodates different vegetation inventories and uses satellite-based measurements of greenness instead of pre-defined vegetation periods. This approach to seasonality implicitly treats effects caused by water or nutrient availability, altitude and latitude on a plant stand. Additionally, we test the influence of proposed seasonal variability in enzyme activity on BVOC emissions. In its present setup, the emission model calculates hourly emissions of isoprene, monoterpenes, sesquiterpenes and the oxygenated volatile organic compounds (OVOC) methanol, formaldehyde, formic acid, ethanol, acetaldehyde, acetone and acetic acid. In this study, emissions based on three different vegetation inventories are compared with each other and diurnal and seasonal variations in Europe are investigated for the year 2006. Two of these vegetation inventories require information on tree-cover as an input. We compare three different land-cover inventories (USGS GLCC, GLC2000 and Globcover 2.2) with respect to tree-cover. The often-used USGS GLCC land-cover inventory leads to a severe reduction of BVOC emissions due to a potential miss-attribution of broad-leaved trees and reduced tree-cover compared to the two other land-cover inventories. To account for uncertainties in the land-cover classification, we introduce land-cover correction factors for each relevant land-use category to adjust the tree-cover. The results are very sensitive to these factors within the plausible range. For June 2006, total monthly BVOC emissions decreased up to −27% with minimal and increased up to +71% with maximal factors, while in January 2006, the changes in monthly BVOC emissions were −54 and +56% with minimal and maximal factors, respectively. The new seasonality approach leads to a reduction in the annual emissions compared with non-adjusted data. The strongest reduction occurs in OVOC (up to −32 %), the weakest in isoprene (as little as −19 %). If also enzyme seasonality is taken into account, however, isoprene reacts with the steepest decrease of annual emissions, which are reduced by −44% to −49 %, annual emissions of monoterpenes reduce between −30 and −35 %. The sensitivity of the model to changes in temperature depends on the climatic zone but not on the vegetation inventory. The sensitivity is higher for temperature increases of 3K (+31% to +64 %) than decreases by the same amount (−20 to −35 %). The climatic zones “Cold except summer” and “arid” are most sensitive to temperature changes in January for isoprene and monoterpenes, respectively, while in June, “polar” is most sensitive to temperature for both isoprene and monoterpenes. Our model predicts the oxygenated volatile organic compounds to be the most abundant fraction of the annual European emissions (3571–5328 Gg yr−1), followed by monoterpenes (2964–4124 Gg yr−1), isoprene (1450–2650 Gg yr−1) and sesquiterpenes (150–257 Gg yr−1). We find regions with high isoprene emissions (most notably the Iberian Peninsula), but overall, oxygenated VOC dominate with 43–45% (depending on the vegetation inventory) contribution to the total annual BVOC emissions in Europe. Isoprene contributes between 18–21 %, monoterpenes 33–36% and sesquiterpenes contribute 1–2 %.We compare the concentrations of biogenic species simulated by an air quality model with measurements of isoprene and monoterpenes in Hohenpeissenberg (Germany) for both summer and winter. The agreement between observed and modelled concentrations is better in summer than in winter. This can partly be explained with the difficulty to model weather conditions in winter accurately, but also with the increased anthropogenic influence on the concentrations of BVOC compounds in winter. Our results suggest that land-cover inventories used to derive tree-cover must be chosen with care. Also, uncertainties in the classification of land-cover pixels must be taken into account and remain high. This problem must be addressed together with the remote sensing community. Our new approach using a greenness index for addressing seasonality of vegetation can be implemented easily in existing models. The importance of OVOC for air quality should be more deeply addressed by future studies, especially in smog chambers. Also, the fate of BVOC from the dominant region of the Iberian Peninsula should be studied more in detail

    Electronic Instrumentation

    Get PDF
    Contains research objectives and reports on four research projects.National Institutes of Health (Grant 1 505 FR07047-01

    Electronic Instrumentation

    Get PDF
    Contains research objectives and reports on four research projects.Electronic Instrumentation Group of the Research Laboratory of Electronics in research under NIH Grant 1 505 FR07047-01National Institutes of Health (Grant 1 505 FR07047-01

    Feasibility of a culturally adapted dietary weight-loss intervention among Ghanaian migrants in Berlin, Germany: the ADAPT study

    Get PDF
    BACKGROUND: Dietary weight-loss interventions often fail among migrant populations. We investigated the practicability and acceptability of a culturally adapted dietary weight-loss intervention among Ghanaian migrants in Berlin. METHODS: The national guidelines for the treatment of adiposity were adapted to the cultural characteristics of the target population, aiming at weight-loss of ≥2.5 kg in 3 months using food-based dietary recommendations. We invited 93 individuals of Ghanaian descent with overweight or obesity to participate in a 12-weeks intervention. The culturally adapted intervention included a Ghanaian dietician and research team, one session of dietary counselling, three home-based cooking sessions with focus on traditional Ghanaian foods, weekly smart-phone reminders, and monthly monitoring of diet and physical activity. We applied a 7-domains acceptability questionnaire and determined changes in anthropometric measures during clinic-based examinations at baseline and after the intervention. RESULTS: Of the 93 invitees, five participants and four family volunteers completed the study. Reasons for non-participation were changed residence (13%), lack of time to attend examinations (10%), and no interest (9%); 64% did not want to give any reason. The intervention was highly accepted among the participants (mean range: 5.3-6.0 of a 6-points Likert scale). Over the 12 weeks, median weight-loss reached -0.6 kg (range: +0.5, -3.6 kg); the diet was rich in meats but low in convenience foods. The median contribution of fat to daily energy intake was 24% (range: 16-40%). CONCLUSIONS: Acceptance of our invitation to the intervention was poor but, once initiated, compliance was good. Assessment centers in the participants' vicinity and early stakeholder involvement might facilitate improved acceptance of the invitation. A randomized controlled trial is required to determine the actual effects of the intervention

    Identification of Novel Genes Selectively Expressed in the Follicle-Associated Epithelium from the Meta-Analysis of Transcriptomics Data from Multiple Mouse Cell and Tissue Populations

    Get PDF
    The follicle-associated epithelium (FAE) overlying the Peyer’s patches and the microfold cells (M cells) within it are important sites of antigen transcytosis across the intestinal epithelium. Using a meta-analysis approach, we identified a transcriptional signature that distinguished the FAE from a large collection of mouse cells and tissues. A co-expressed cluster of 21 FAE-specific genes was identified, and the analysis of the transcription factor binding site motifs in their promoter regions indicated that these genes shared an underlying transcriptional programme. This cluster contained known FAE- (Anxa10, Ccl20, Psg18 and Ubd) and M-cell-specific (Gp2) genes, suggesting that the others were novel FAE-specific genes. Some of these novel candidate genes were expressed highly by the FAE and M cells (Calcb, Ces3b, Clca2 and Gjb2), and others only by the FAE (Ascl2, Cftr, Fgf15, Gpr133, Kcna1, Kcnj15,Mycl1, Pgap1 and Rps6kl). We also identified a subset of novel FAE-related genes that were induced in the intestinal epithelium after receptor activatorof nuclear factor (NF)-kB ligand stimulation. These includedMfge8whichwas specific to FAE enter-ocytes. This studyprovides new insight into the FAE transcriptome. Furthercharacterizationof the candidate genes identified here will aid the identification of novel regulators of cell function in the FAE

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF
    corecore