9 research outputs found

    Infection of Neonatal Mice with Sindbis Virus Results in a Systemic Inflammatory Response Syndrome

    Get PDF
    Laboratory strains of viruses may contain cell culture-adaptive mutations which result in significant quantitative and qualitative alterations in pathogenesis compared to natural virus isolates. This report suggests that this is the case with Sindbis virus strain AR339. A cDNA clone comprising a consensus sequence of Sindbis virus strain AR339 has been constructed (W. B. Klimstra, K. D. Ryman, and R. E. Johnston, J. Virol. 72:7357–7366, 1998). This clone (pTR339) regenerates a sequence predicted to be very close to that of the original AR339 isolate by eliminating several cell culture-adaptive mutations present in individual laboratory strains of the virus (K. L. McKnight et al., J. Virol. 70:1981–1989, 1996). It thus provides a unique reagent for study of the pathogenesis of Sindbis virus strain AR339 in mice. Neonatal mouse pathogenesis of virus (TR339) generated from the pTR339 clone was compared with that of virus from a cDNA clone of the cell culture-passaged laboratory AR339 strain, TRSB, and virus from a clone of a more highly cell culture-adapted strain, HR(sp) (Toto 50). The sequence of TRSB differs from the consensus at three coding positions, while Toto 50 differs at eight codons and one nucleotide in the 5′ nontranslated region. Both cell culture-adapted strains contain mutations associated with heparan sulfate (HS)-dependent attachment to cells (W. B. Klimstra, K. D. Ryman, and R. E. Johnston, J. Virol. 72:7357–7366, 1998). TR339 caused 100% mortality with an average survival time (AST) of 1.7 ± 0.25 days. While TRSB also caused 100% mortality, the AST was extended to 2.9 ± 0.52 days. The more extensively cell culture-adapted virus Toto 50 caused only 30% mortality with an AST extended to 11.0 ± 4.8 days. TRSB and TR339 induced high serum levels of alpha/beta interferon, gamma interferon, tumor necrosis factor alpha, interleukin-6, and corticosterone and induced pathology reminiscent of lipopolysaccharide-induced endotoxic shock, a type of systemic inflammatory response syndrome. However, the reduced intensity of this response in TRSB-infected mice correlated with the increased AST. Toto 50 failed to induce the shock-like cytokine cascade. In situ hybridization studies indicated that TR339 and TRSB replicated in identical tissues, but the TRSB signal was less widespread at early times postinfection. While Toto 50 also replicated in similar tissues, the extent of replication was severely restricted and mice developed lesions characteristic of encephalitis. A single mutation in TRSB at E2 position 1 (Arg) conferred HS-dependent attachment to cells and was associated with reduced cytokine induction and extended AST in vivo

    Impact of transient correction of increased adrenocortical activity in hypothalamo-damaged, hyperadipose female rats.

    Get PDF
    OBJECTIVE: To explore the effects of transient correction of enhanced corticoadrenal activity in monosodium L-glutamate (MSG)-damaged female rats on peripheral insulin sensitivity and in vitro retroperitoneal (RP) adipocyte function. DESIGNS: A dose of 4 mg/g body weight (BW) of MSG or vehicle (CTR) was i.p. injected, once every 2 days, between days 2 and 10 of age, in female rats. Intact and 21 day-operated (sham or adrenal enucleation (AE)) rats from both (CTR and MSG) groups were used for experimentation on day 120 of age. Circulating levels of several hormones, in basal and after i.v. high-glucose load conditions, and RP adiposity morphology and function were then evaluated. RESULTS: MSG rats developed increased adrenocortical function, hyperadiposity, hyperleptinemia, hyperinsulinemia and decreased peripheral insulin sensitivity. These characteristics were fully reversed after transient correction of corticoadrenal hyperactivity induced by AE. In addition, in vitro experimentation with isolated RP adipocytes indicated that cells from intact MSG animals displayed decreased sensitivity to insulin and dexamethasone stimulation of leptin secretion. Interestingly, adipocyte dysfunction in MSG rats was fully abrogated after AE-induced transient correction of insulinemia, leptinemia and adrenocortical activity. Importantly, the reversion of these metabolic abnormalities, induced by AE for 21 days, in MSG animals did occur, despite no significant changes in BW values. CONCLUSION: Our results support that the changes in adipocyte characteristics and peripheral insulin resistance, developed in this pseudo-obese female rat model, are mainly due to increased glucocorticoid production. Importantly, appropriate correction of the enhanced adrenocortical activity fully reversed these abnormal functions

    Vascular Alterations in Mental Disorders: Focus in Angiotensin II Role

    No full text
    Mental disorders have high prevalence and long duration, affecting the quality of life and generating elevated economic costs in public health. Approximately 25% of population worldwide will develop any mental illness at some moment of its lifetime. These disorders are the result of complex processes involving the interaction of many pathological changes. Although, each psychiatric disease has well-defined characteristics, some of their neurobiological processes, like inflammation and vascular alterations, seem to be common. Since microvasculature is involved in essential functions as oxygen delivery, waste product removal, and transvascular exchange, any brain vessel alteration could promote a pathological state. In this sense, capillary ultrastructural abnormalities, deficient perfusion, and blood-brain barrier disruption have been described in schizophrenia, depression, and Parkinson?s and Alzheimer?s diseases. These vascular dysfunctions could be related to angiogenic factor deregulations. The abovementioned evidences point out to evaluate the vasculature as a future pharmacological target for the treatment of mental disorders. Among the several factors involved in the regulation of angiogenesis, this chapter will focus on the upstream angiogenic mediator Angiotensin II. This peptide is produced at peripheral and brain level and exerts its principal effects acting through AT1 receptors. Considering that the available treatments for mental illnesses have low efficacy and high incidence of side effects, new pharmacological tools become necessary. The present chapter will be focused in the evidences that support Angiotensin II as a key factor in the understanding and therapy of these pathologies.Fil: Delgado Marín, Leticia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Basmadjian, Osvaldo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Occhieppo, Victoria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Marchese, Natalia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Bregonzio Diaz, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Baiardi, Gustavo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin
    corecore