18 research outputs found
Scanning the horizon: towards transparent and reproducible neuroimaging research
Functional neuroimaging techniques have transformed our ability to probe the neurobiological basis of behaviour and are increasingly being applied by the wider neuroscience community. However, concerns have recently been raised that the conclusions that are drawn from some human neuroimaging studies are either spurious or not generalizable. Problems such as low statistical power, flexibility in data analysis, software errors and a lack of direct replication apply to many fields, but perhaps particularly to functional MRI. Here, we discuss these problems, outline current and suggested best practices, and describe how we think the field should evolve to produce the most meaningful and reliable answers to neuroscientific questions
Close association of invading Plasmodium berghei and beta integrin in the Anopheles gambiae midgut.
We have used confocal microscopy and an antibody against Anopheles gambiae beta integrin to study this protein's distribution in the mosquito midgut and its relationship to invading Plasmodium berghei parasites. An extensive reorganization of integrin is seen to take place in the midgut epithelial cells following the uptake of either non-infected or parasite-infected blood meal, probably reflecting the reshaping of the gut due to the presence of the food bolus and the peritrophic membrane that surrounds it. Furthermore, malaria parasites are coated with beta integrin immediately upon entry into the epithelium, independent of whether they develop intra- or extracellularly. Although this coat is shed a few days after the invasion, beta integrin remains concentrated in the cells surrounding the maturing oocyst for several days. Finally, the antibody detects a structural change in the midgut epithelial cells in the immediate vicinity of the invading ookinete, which is consistent with Plasmodium-induced apoptosis followed by wound healing. This intimate association suggests a specific role of beta integrin in the invasion process
Anopheles gambiae laminin interacts with the P25 surface protein of Plasmodium berghei ookinetes.
Laminin is a major constituent of the basal lamina surrounding the midgut of the malaria vectors that has been implicated in the development of the Plasmodium oocyst. In this report we describe the cloning of the Anopheles gambiae gene encoding the laminin gamma 1 polypeptide and follow its expression during mosquito development. To further investigate the putative role of laminin in the transmission of the malaria parasite we studied the potential binding of the P25 surface protein of Plasmodium berghei using a yeast two-hybrid system. Heterodimer formation was observed and does not require any additional protein factors since purified fusion proteins can also bind each other in vitro. Laminin gamma 1 also interacts with the paralogue of P25, namely P28, albeit more weakly, possibly explaining why the two parasite proteins can substitute for each other in deletion mutants. This represents the first direct evidence for molecular interactions between a surface protein of the Plasmodium parasite with an Anopheles protein; the strong interplay between laminin gamma 1 and P25 suggests that this pair of proteins may function as a receptor/ligand complex regulating parasite development in the mosquito vector
Distinct roles for pbs21 and pbs25 in the in vitro ookinete to oocyst transformation of Plasmodium berghei.
We have developed an in vitro culture system for early sporogonic stages of Plasmodium berghei, which can be used to study developmental events normally taking place in the midgut of an infected mosquito. These include penetration of insect cells by the mature ookinete, transformation into oocysts and the early development of the latter, sustained through several rounds of nuclear division. The system, based upon co-culture of enriched ookinetes with several established insect cell lines, was used to study the development of mutant ookinetes lacking both the Pbs21 and Pbs25 surface proteins. Motility and entry of double knockout and Pbs21 single knockout ookinetes into the insect cells are normal, but the number of ookinetes successfully transforming into oocysts expressing the CSP protein are substantially reduced. Finally, using the yeast two-hybrid system we also show that Pbs25 has the capacity to homodimerise as well as to form heterodimers with Pbs21
Towards a physical map of the Drosophila melanogaster genome: mapping of cosmid clones within defined genomic divisions.
A physical map of the D. melanogaster genome is being constructed, in the form of overlapping cosmid clones that are assigned to specific polytene chromosome sites. A master library of ca. 20,000 cosmids is screened with probes that correspond to numbered chromosomal divisions (ca. 1% of the genome); these probes are prepared by microdissection and PCR-amplification of individual chromosomes. The 120 to 250 cosmids selected by each probe are fingerprinted by Hinfl digestion and gel electrophoresis, and overlaps are detected by computer analysis of the fingerprints, permitting us to assemble sets of contiguous clones (contigs). Selected cosmids, both from contigs and unattached, are then localized by in situ hybridization to polytene chromosomes. Crosshybridization analysis using end probes links some contigs, and hybridization to previously cloned genes relates the physical to the genetic map. This approach has been used to construct a physical map of the 3.8 megabase DNA in the three distal divisions of the x chromosome. The map is represented by 181 canonical cosmids, of which 108 clones in contigs and 32 unattached clones have been mapped individually by in situ hybridization to chromosomes. Our current database of in situ hybridization results also includes the beginning of a physical map for the rest of the genome: 162 cosmids have been assigned by in situ hybridization to 129 chromosomal subdivisions elsewhere in the genome, representing 5 to 6 megabases of additional mapped DNA