109 research outputs found

    Axions and Photons In Terms of "Particles" and "Anti-Particles"

    Full text link
    The axion photon system in an external magnetic field, when for example considered with the geometry of the experiments exploring axion photon mixing (which can be represented by a 1+1 effective model) displays a continuous axion-photon duality symmetry in the limit the axion mass is neglected. The conservation law that follows from this symmetry is obtained. The magnetic field interaction is seen to be equivalent to first order to the interaction of a complex charged field with an external electric potential, where this ficticious "electric potential" is proportional to the external magnetic field. This allows one to solve for the scattering amplitudes using already known scalar QED results. Axion photon oscillations can be understood as violations of a charge symmetry in the scalar QED language. Going beyond the linear theory, the axion photon system in a self consistent magnetic field is shown, using this formalism, to have interesting soliton solutions that represent new non gravitational ways of trapping light. Finally, generalizing the scalar QED formalism to 2+1 dimensions makes it clear that a photon and an axion splitt into two components in an inhomogeneous magnetic field, an effect that reminds us of the Stern Gerlach experiment.Comment: Talk given at the 4th Patras workshop on axions, WIMPs and WISPs, Hamburg, Gemany, 18-21 Jun 2008. Corrected reference in version

    Stabilization of Neutral Thin Shells By Gravitational Effects From Electric Fields

    Full text link
    We study the properties of a system consisting of an uncharged spherically symmetric two dimensional extended object which encloses a stationary point charge placed in the shell's center. We show that there can be a static and stable configuration for the neutral shell, using only the gravitational field of the charged source as a stabilizing mechanism. In particular, two types of shells are studied: a dust shell and a string gas shell. The dynamical possibilities are also analyzed, including the possibility of child universe creation.Comment: 5 pages, 1 figur

    Axions Scattering From a Quadrupole Magnetic Field

    Full text link
    We study the 2D scattering of axions from an accelerator like quadrupole magnet using the eikonal approximation in order to learn whether or not such a setup could serve as a new possible method for detecting axions on terrestrial experiments. The eikonal approximation in 2D is introduced and explained. We also apply the eikonal approximation to two known cases in order to compare it with previous results, obtained using Born's approximation, and discuss its correctness

    New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory

    Full text link
    Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of magnitude beyond the limits of the current state-of-the-art detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into X-ray photons. Inspired by the successful realization of the ATLAS barrel and end-cap toroids, a very large superconducting toroid is currently designed at CERN to provide the required magnetic field. This toroid will comprise eight, one meter wide and twenty one meter long, racetrack coils. The system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization process to arrive at maximum detector yield is described. In addition, materials selection and their structure and sizing has been determined by force and stress calculations. Thermal loads are estimated to size the necessary cryogenic power and the concept of a forced flow supercritical helium based cryogenic system is given. A quench simulation confirmed the quench protection scheme.Comment: Accepted for publication in Adv. Cryo. Eng. (CEC/ICMC 2013 special issue

    Conceptual Design of a New Large Superconducting Toroid for IAXO, the New International AXion Observatory

    Full text link
    The International AXion Observatory (IAXO) will incorporate a new generation detector for axions, a hypothetical particle, which was postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP problem. The new IAXO experiment is aiming at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current state-of-the-art detector, represented by the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into x-ray photons. Utilizing the designs of the ATLAS barrel and end-cap toroids, a large superconducting toroidal magnet is currently being designed at CERN to provide the required magnetic field. The new toroid will be built up from eight, one meter wide and 20 m long, racetrack coils. The toroid is sized about 4 m in diameter and 22 m in length. It is designed to realize a peak magnetic field of 5.4 T with a stored energy of 500 MJ. The magnetic field optimization process to arrive at maximum detector yield is described. In addition, force and stress calculations are performed to select materials and determine their structure and sizing. Conductor dimensionality, quench protection and the cryogenic design are dealt with as well.Comment: 5 pages, 5 figures. To be published in IEEE Trans. Appl. Supercond. 23 (ASC 2012 conference special issue

    The Superconducting Toroid for the New International AXion Observatory (IAXO)

    Full text link
    IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5.4 T. At the operational current of 12 kA the stored energy is 500 MJ. The racetrack type of coils are wound with a reinforced Aluminum stabilized NbTi/Cu cable and are conduction cooled. The coils optimization is shortly described as well as new concepts for cryostat, cold mass, supporting structure and the sun tracking system. Materials selection and sizing, conductor, thermal loads, the cryogenics system and the electrical system are described. Lastly, quench simulations are reported to demonstrate the system's safe quench protection scheme.Comment: To appear in IEEE Trans. Appl. Supercond. MT 23 issue. arXiv admin note: substantial text overlap with arXiv:1308.2526, arXiv:1212.463

    The influence of the Al stabilizer layer thickness on the normal zone propagation velocity in high current superconductors

    Full text link
    The stability of high-current superconductors is challenging in the design of superconducting magnets. When the stability requirements are fulfilled, the protection against a quench must still be considered. A main factor in the design of quench protection systems is the resistance growth rate in the magnet following a quench. The usual method for determining the resistance growth in impregnated coils is to calculate the longitudinal velocity with which the normal zone propagates in the conductor along the coil windings. Here, we present a 2D numerical model for predicting the normal zone propagation velocity in Al stabilized Rutherford NbTi cables with large cross section. By solving two coupled differential equations under adiabatic conditions, the model takes into account the thermal diffusion and the current redistribution process following a quench. Both the temperature and magnetic field dependencies of the superconductor and the metal cladding materials properties are included. Unlike common normal zone propagation analyses, we study the influence of the thickness of the cladding on the propagation velocity for varying operating current and magnetic field. To assist in the comprehension of the numerical results, we also introduce an analytical formula for the longitudinal normal zone propagation. The analysis distinguishes between low-current and high-current regimes of normal zone propagation, depending on the ratio between the characteristic times of thermal and magnetic diffusion. We show that above a certain thickness, the cladding acts as a heat sink with a limited contribution to the acceleration of the propagation velocity with respect to the cladding geometry. Both numerical and analytical results show good agreement with experimental data.Comment: To be published in Physics Procedia (ICEC 25 conference special issue
    • …
    corecore