14 research outputs found

    Coupling of Real-Time and Co-Simulation for the Evaluation of the Large Scale Integration of Electric Vehicles into Intelligent Power Systems

    Full text link
    This paper addresses the validation of electric vehicle supply equipment by means of a real-time capable co-simulation approach. This setup implies both pure software and real-time simulation tasks with different sampling rates dependent on the type of the performed experiment. In contrast, controller and power hardware-in-the-loop simulations are methodologies which ask for real-time execution of simulation models with well-defined simulation sampling rates. Software and real-time methods are connected one to each other using an embedded software interface. It is able to process signals with different time step sizes and is called "LabLink". Its design implies both common and specific input and output layers (middle layer), as well as a data bus (core). The LabLink enables the application of the co-simulation methodology on the proposed experimental platform targeting the testing of electric vehicle supply equipment. The test setup architecture and representative examples for the implemented co-simulation are presented in this paper. As such, a validation of the usability of this testing platform can be highlighted aiming to support a higher penetration of electric vehicles.Comment: 2017 IEEE Vehicle Power and Propulsion Conference (VPPC

    Fitting the grain orientation distribution of a polycrystalline material conditioned on a Laguerre tessellation

    Full text link
    The description of distributions related to grain microstructure helps physicists to understand the processes in materials and their properties. This paper presents a general statistical methodology for the analysis of crystallographic orientations of grains in a 3D Laguerre tessellation dataset which represents the microstructure of a polycrystalline material. We introduce complex stochastic models which may substitute expensive laboratory experiments: conditional on the Laguerre tessellation, we suggest interaction models for the distribution of cubic crystal lattice orientations, where the interaction is between pairs of orientations for neighbouring grains in the tessellation. We discuss parameter estimation and model comparison methods based on maximum pseudolikelihood as well as graphical procedures for model checking using simulations. Our methodology is applied for analysing a dataset representing a nickel-titanium shape memory alloy

    Wedge splitting test method: quantification of influence of glued marble plates by two-parameter fracture mechanics

    Get PDF
    In the present paper, the well-known wedge splitting test (WST) is applied on specimens with different geometries (S= 150, 200, 300 mm) and variants of the specimens’ configurations. K-calibration (B1) and T-stress (B2) calibration curves for such specimens are introduced. The objective was to compare and discuss the values of the calibration curves dependent on the specimen’s geometries and on three different specimens' configurations: homogenous specimen; specimen with marble plates forming the groove for load application and specimen with glued marble plates

    Wedge splitting test method: quantification of influence of glued marble plates by two-parameter fracture mechanics

    No full text
    ABSTRACT. In the present paper, the well-known wedge splitting test (WST) is applied on specimens with different geometries (S= 150, 200, 300 mm) and variants of the specimens' configurations. K-calibration (B 1 ) and T-stress (B 2 ) calibration curves for such specimens are introduced. The objective was to compare and discuss the values of the calibration curves dependent on the specimen's geometries and on three different specimens' configurations: homogenous specimen; specimen with marble plates forming the groove for load application and specimen with glued marble plates

    Wedge splitting test method: quantification of influence of glued marble plates by two-parameter fracture mechanics

    No full text
    In the present paper, the well-known wedge splitting test (WST) is applied on specimens with different geometries (S= 150, 200, 300 mm) and variants of the specimens’ configurations. K-calibration (B1) and T-stress (B2) calibration curves for such specimens are introduced. The objective was to compare and discuss the values of the calibration curves dependent on the specimen’s geometries and on three different specimens' configurations: homogenous specimen; specimen with marble plates forming the groove for load application and specimen with glued marble plates

    Comparison of Power Hardware-in-the-Loop Approaches for the Testing of Smart Grid Controls

    No full text
    The fundamental changes in the energy sector, due to the rise of renewable energy resources and the possibilities of the digitalisation process, result in the demand for new methodologies for testing Smart Grid concepts and control strategies. Using the Power Hardware-in-the-Loop (PHIL) methodology is one of the key elements for such evaluations. PHIL and other in-the-loop concepts cannot be considered as plug’n’play and, for a wider adoption, the obstacles have to be reduced. This paper presents the comparison of two different setups for the evaluation of components and systems focused on undisturbed operational conditions. The first setup is a conventional PHIL setup and the second is a simplified setup based on a quasi-dynamic PHIL (QDPHIL) approach which involves fast and continuously steady state load flow calculations. A case study which analyses a simple superimposed voltage control algorithm gives an example for the actual usage of the quasi-dynamic setup. Furthermore, this article also provides a comparison and discussion of the achieved results with the two setups and it concludes with an outlook about further research
    corecore