7,212 research outputs found

    Self-forces from generalized Killing fields

    Full text link
    A non-perturbative formalism is developed that simplifies the understanding of self-forces and self-torques acting on extended scalar charges in curved spacetimes. Laws of motion are locally derived using momenta generated by a set of generalized Killing fields. Self-interactions that may be interpreted as arising from the details of a body's internal structure are shown to have very simple geometric and physical interpretations. Certain modifications to the usual definition for a center-of-mass are identified that significantly simplify the motions of charges with strong self-fields. A derivation is also provided for a generalized form of the Detweiler-Whiting axiom that pointlike charges should react only to the so-called regular component of their self-field. Standard results are shown to be recovered for sufficiently small charge distributions.Comment: 21 page

    Self-forces on extended bodies in electrodynamics

    Full text link
    In this paper, we study the bulk motion of a classical extended charge in flat spacetime. A formalism developed by W. G. Dixon is used to determine how the details of such a particle's internal structure influence its equations of motion. We place essentially no restrictions (other than boundedness) on the shape of the charge, and allow for inhomogeneity, internal currents, elasticity, and spin. Even if the angular momentum remains small, many such systems are found to be affected by large self-interaction effects beyond the standard Lorentz-Dirac force. These are particularly significant if the particle's charge density fails to be much greater than its 3-current density (or vice versa) in the center-of-mass frame. Additional terms also arise in the equations of motion if the dipole moment is too large, and when the `center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly speaking). These conditions are often quite restrictive. General equations of motion were also derived under the assumption that the particle can only interact with the radiative component of its self-field. These are much simpler than the equations derived using the full retarded self-field; as are the conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for publication in Phys. Rev.

    Developing Leadership Dispositions for Preparing Urban School Leaders in Chronically Low-Performing Schools

    Get PDF
    This study originated as an institutionally sponsored research residency conducted using utilization-focused evaluation (Patton, 2008) to investigate the nature of dispositional changes in candidates pursuing National Louis University’s M.Ed. and Ed.S. degrees leading to educational leadership (EDL) state certification in one large urban school district in a Southern state. The EDL program organized learning objectives intending to develop a specific knowledge base, an operational competency set, and, as this study’s focus, leadership dispositions related to preparing assistant principals and principals to lead effectively in chronically low-performing (CLP) schools. The inquiry cross-analyzed data at the intersection of the graduate program’s disposition-related learning objectives with 13 leadership dispositions identified in The Haberman Educational Foundation Star Urban Administrator Pre-Screener. EDL program faculty administered the pre-screener to EDL program candidates twice, yielding 187 matched pairs in pre-program and post-program administrations. Statistical analyses yielded a significant difference (improvement) in overall Haberman scores at the .01 alpha level, as well as an effect size considered (Cohen, 1969) to be a medium effect size. Faculty triangulated the data with interviews of alumni and faculty with experience in leading CLP schools, who affirmed that focus on leadership dispositions serves an important developmental role in an EDL program. The study appears to validate the measurable presence and dynamic changes in EDL candidate dispositions as an element of a graduate program focused on developing effective leaders of CLP schools

    Electromagnetic self-forces and generalized Killing fields

    Full text link
    Building upon previous results in scalar field theory, a formalism is developed that uses generalized Killing fields to understand the behavior of extended charges interacting with their own electromagnetic fields. New notions of effective linear and angular momenta are identified, and their evolution equations are derived exactly in arbitrary (but fixed) curved spacetimes. A slightly modified form of the Detweiler-Whiting axiom that a charge's motion should only be influenced by the so-called "regular" component of its self-field is shown to follow very easily. It is exact in some interesting cases, and approximate in most others. Explicit equations describing the center-of-mass motion, spin angular momentum, and changes in mass of a small charge are also derived in a particular limit. The chosen approximations -- although standard -- incorporate dipole and spin forces that do not appear in the traditional Abraham-Lorentz-Dirac or Dewitt-Brehme equations. They have, however, been previously identified in the test body limit.Comment: 20 pages, minor typos correcte

    Signatures of High-Intensity Compton Scattering

    Full text link
    We review known and discuss new signatures of high-intensity Compton scattering assuming a scenario where a high-power laser is brought into collision with an electron beam. At high intensities one expects to see a substantial red-shift of the usual kinematic Compton edge of the photon spectrum caused by the large, intensity dependent, effective mass of the electrons within the laser beam. Emission rates acquire their global maximum at this edge while neighbouring smaller peaks signal higher harmonics. In addition, we find that the notion of the centre-of-mass frame for a given harmonic becomes intensity dependent. Tuning the intensity then effectively amounts to changing the frame of reference, going continuously from inverse to ordinary Compton scattering with the centre-of-mass kinematics defining the transition point between the two.Comment: 25 pages, 16 .eps figure

    The Trans-Pacific Partnership Agreement: Looking Ahead to the Next Steps

    Get PDF
    Pressure has been building for the conclusion of the 12-country Trans-Pacific Partnership (TPP) negotiations. Getting the deal done is important, but the TPP is not just another free trade agreement (FTA). It represents the chance to set a trade agenda for the future across a wide range of topics for countries throughout the Asia-Pacific region. This means that the agreement should not be settled in haste. More importantly, it also means that key decisions need to be reached about broader issues related to the institutional structure of the TPP. These decisions must be made now, before the deal is closed, on issues such as how to create the TPP as a living agreement, the formation of a TPP Secretariat, and the clarification of entry conditions for future members such as the People’s Republic of China (PRC). These choices must be made deliberately and carefully even while officials are struggling with reaching closure on the most highly sensitive issues still remaining in the agreement. It will not be easy, but wise decisions are necessary now to ensure the long-term success of the TPP

    Membrane-Bound Catechol-O-Methyl Transferase in Cortical Neurons and Glial Cells is Intracellularly Oriented

    Get PDF
    Catechol-O-methyl transferase (COMT) is involved in the inactivation of dopamine in brain regions in which the dopamine transporter (DAT1) is sparsely expressed. The membrane-bound isoform of COMT (MB-COMT) is the predominantly expressed form in the mammalian central nervous system (CNS). It has been a matter of debate whether in neural cells of the CNS the enzymatic domain of MB-COMT is oriented toward the cytoplasmic or the extracellular compartment. Here we used live immunocytochemistry on cultured neocortical neurons and glial cells to investigate the expression and membrane orientation of native COMT and of transfected MB-COMT fused to green fluorescent protein (GFP). After live staining, COMT immunoreactivity was reliably detected in both neurons and glial cells after permeabilization, but not on unpermeabilized cells. Similarly, autofluorescence of COMT-GFP fusion protein and antibody fluorescence showed overlap only in permeabilized neurons. Our data provide converging evidence for an intracellular membrane orientation of MB-COMT in neurons and glial cells, suggesting the presence of a DAT1-independent postsynaptic uptake mechanism for dopamine, prior to its degradation via COMT
    • …
    corecore