1,678 research outputs found

    Limitations on quantum control

    Full text link
    In this note we give an introduction to the topic of quantum control, explaining what its objectives are, and describing some of its limitations.Comment: 6 page

    Complete controllability of finite-level quantum systems

    Get PDF
    Complete controllability is a fundamental issue in the field of control of quantum systems, not least because of its implications for dynamical realizability of the kinematical bounds on the optimization of observables. In this paper we investigate the question of complete controllability for finite-level quantum systems subject to a single control field, for which the interaction is of dipole form. Sufficient criteria for complete controllability of a wide range of finite-level quantum systems are established and the question of limits of complete controllability is addressed. Finally, the results are applied to give a classification of complete controllability for four-level systems.Comment: 14 pages, IoP-LaTe

    Dissipative "Groups" and the Bloch Ball

    Full text link
    We show that a quantum control procedure on a two-level system including dissipation gives rise to a semi-group corresponding to the Lie algebra semi-direct sum gl(3,R)+R^3. The physical evolution may be modelled by the action of this semi-group on a 3-vector as it moves inside the Bloch sphere, in the Bloch ball.Comment: 4 pages. Proceedings of Group 24, Paris, July, 200

    Dissipative Quantum Control

    Full text link
    Nature, in the form of dissipation, inevitably intervenes in our efforts to control a quantum system. In this talk we show that although we cannot, in general, compensate for dissipation by coherent control of the system, such effects are not always counterproductive; for example, the transformation from a thermal (mixed) state to a cold condensed (pure state) can only be achieved by non-unitary effects such as population and phase relaxation.Comment: Contribution to Proceedings of \emph{ICCSUR 8} held in Puebla, Mexico, July 2003, based on talk presented by Allan Solomon (ca 8 pages, latex, 1 latex figure, 2 pdf figures converted to eps, appear to cause some trouble

    Criteria for reachability of quantum states

    Full text link
    We address the question of which quantum states can be inter-converted under the action of a time-dependent Hamiltonian. In particular, we consider the problem applied to mixed states, and investigate the difference between pure and mixed-state controllability introduced in previous work. We provide a complete characterization of the eigenvalue spectrum for which the state is controllable under the action of the symplectic group. We also address the problem of which states can be prepared if the dynamical Lie group is not sufficiently large to allow the system to be controllable.Comment: 14 pages, IoP LaTeX, first author has moved to Cambridge university ([email protected]

    Quantum Control of Two-Qubit Entanglement Dissipation

    Full text link
    We investigate quantum control of the dissipation of entanglement under environmental decoherence. We show by means of a simple two-qubit model that standard control methods - coherent or open-loop control - will not in general prevent entanglement loss. However, we propose a control method utilising a Wiseman-Milburn feedback/measurement control scheme which will effectively negate environmental entanglement dissipation.Comment: 11 pages,4 figures, minor correctio

    Implementation of Fault-tolerant Quantum Logic Gates via Optimal Control

    Full text link
    The implementation of fault-tolerant quantum gates on encoded logic qubits is considered. It is shown that transversal implementation of logic gates based on simple geometric control ideas is problematic for realistic physical systems suffering from imperfections such as qubit inhomogeneity or uncontrollable interactions between qubits. However, this problem can be overcome by formulating the task as an optimal control problem and designing efficient algorithms to solve it. In particular, we can find solutions that implement all of the elementary logic gates in a fixed amount of time with limited control resources for the five-qubit stabilizer code. Most importantly, logic gates that are extremely difficult to implement using conventional techniques even for ideal systems, such as the T-gate for the five-qubit stabilizer code, do not appear to pose a problem for optimal control.Comment: 18 pages, ioptex, many figure

    Degrees of controllability for quantum systems and applications to atomic systems

    Get PDF
    Precise definitions for different degrees of controllability for quantum systems are given, and necessary and sufficient conditions are discussed. The results are applied to determine the degree of controllability for various atomic systems with degenerate energy levels and transition frequencies.Comment: 20 pages, IoP LaTeX, revised and expanded versio
    • тАж
    corecore