4 research outputs found

    Integration of tree allometry rules to treetops detection and tree crowns delineation using airborne lidar data

    No full text

    Determining basic forest stand characteristics using airborne laser scanning in mixed forest stands of Central Europe

    No full text
    This study focused on the derivation of basic stand characteristics from airborne laser scanning (ALS) data, aiming to elucidate which characteristics (mean height and diameter, dominant height and diameter) are best approximated by the variables obtained using ALS data. The height of trees of different species in four permanent plots located in the Slovak Republic was derived from the normalised digital surface model (nDSM) representing the canopy surface, using an automatic approach to identify local maxima (individual treetops). Tree identification was carried out using four different spatial resolutions of the nDSM (0.5 m, 1.0 m, 1.5 m, and 2.0 m) and the number of trees identified was compared with reference data obtained from field measurements. The highest percentage of tree detection (69-75%) was observed at the spatial resolutions of 1.0 and 1.5 m. Absolute differences of tree height between reference and ALS datasets ranged from 0 to 36% at all spatial resolutions. The smallest difference in mean height was obtained using the higher spatial resolution (0.5 m), while the smallest difference in the dominant height of the relative number of thickest trees (h10% and h20%) was observed using the lower spatial resolution (2 m). The same trends also apply to diameters. The average errors at resolution of 1.0 and 1.5 m was 8.7%, 5.9% and 9.7% for mean height, h20% and h10%, respectively. ALS-derived diameters (obtained using regression models from reference data and ALS-derived individual height as predictor) showed absolute errors in the range 0-48% at all spatial resolutions. The deviation in mean diameter at a resolution of 0.5 m ranged from -12.1% to 15.3%
    corecore