18,922 research outputs found

    Efficiency of a thermodynamic motor at maximum power

    Full text link
    Several recent theories address the efficiency of a macroscopic thermodynamic motor at maximum power and question the so-called "Curzon-Ahlborn (CA) efficiency." Considering the entropy exchanges and productions in an n-sources motor, we study the maximization of its power and show that the controversies are partly due to some imprecision in the maximization variables. When power is maximized with respect to the system temperatures, these temperatures are proportional to the square root of the corresponding source temperatures, which leads to the CA formula for a bi-thermal motor. On the other hand, when power is maximized with respect to the transitions durations, the Carnot efficiency of a bi-thermal motor admits the CA efficiency as a lower bound, which is attained if the duration of the adiabatic transitions can be neglected. Additionally, we compute the energetic efficiency, or "sustainable efficiency," which can be defined for n sources, and we show that it has no other universal upper bound than 1, but that in certain situations, favorable for power production, it does not exceed 1/2

    Surface spin flip probability of mesoscopic Ag wires

    Full text link
    Spin relaxation in mesoscopic Ag wires in the diffusive transport regime is studied via nonlocal spin valve and Hanle effect measurements performed on permalloy/Ag lateral spin valves. The ratio between momentum and spin relaxation times is not constant at low temperatures. This can be explained with the Elliott-Yafet spin relaxation mechanism by considering the momentum surface relaxation time as being temperature dependent. We present a model to separately determine spin flip probabilities for phonon, impurity and surface scattering and find that the spin flip probability is highest for surface scattering.Comment: 5 pages, 4 figure

    Toward inertial confinement fusion energy based on heavy ion beam

    Full text link
    Heavy ion inertial fusion (HIF) energy would be one of promising energy resources securing our future energy in order to sustain our human life for centuries and beyond. The heavy ion beam (HIB) has remarkable preferable features to release the fusion energy in inertial confinement fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~ 30-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50-70 to operate a HIF fusion reactor with the standard energy output of 1GW of electricity. The HIF reactor operation frequency would be ~10~15 Hz or so. Several-MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a thousand times of the solid density. Then the DT fuel is ignited and burned. The HIB ion deposition range would be ~0.5-1 mm or so depending on the material. Therefore, a relatively large density-scale length appears in the fuel target material. The large density-gradient-scale length helps to reduce the Rayleigh-Taylor (R-T) growth rate. The key merits in HIF physics are presented in the article toward our bright future energy resource.Comment: 17 pages. arXiv admin note: substantial text overlap with arXiv:1511.06508, arXiv:1608.0106

    Tube Width Fluctuations in F-Actin Solutions

    Get PDF
    We determine the statistics of the local tube width in F-actin solutions, beyond the usually reported mean value. Our experimental observations are explained by a segment fluid theory based on the binary collision approximation (BCA). In this systematic generalization of the standard mean-field approach effective polymer segments interact via a potential representing the topological constraints. The analytically predicted universal tube width distribution with a stretched tail is in good agreement with the data.Comment: Final version, 5 pages, 4 figure

    General graviton exchange graph for four point functions in the AdS/CFT correspondence

    Get PDF
    In this note we explicitly compute the graviton exchange graph for scalar fields with arbitrary conformal dimension \Delta in arbitrary spacetime dimension d. This results in an analytical function in \Delta as well as in d.Comment: 14 pages, 2 figure

    FPGA Hit Finder and Energy Filter for the FEBEX Pipelining ADC

    Get PDF

    Quantifying spin Hall angles from spin pumping: Experiments and Theory

    Full text link
    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating permalloy/normal metal (N) bilayers into a coplanar waveguide. A dc spin current in N can be generated by spin pumping in a controllable way by ferromagnetic resonance. The transverse dc voltage detected along the permalloy/N has contributions from both the anisotropic magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by their symmetries. We developed a theory that accounts for both. In this way, we determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach can readily be adapted to any conducting material with even very small spin Hall angles.Comment: 4 pages, 4 figure
    • …
    corecore