421 research outputs found
Nonlocal vortex motion in mesoscopic amorphous Nb0.7Ge0.3 structures
We study nonlocal vortex transport in mesoscopic amorphous Nb0.7Ge0.3
samples. A dc current I is passed through a wire connected via a perpendicular
channel, of a length L= 2-5 um, with a pair of voltage probes where a nonlocal
response Vnl ~ I is measured. The maximum of Rnl=Vnl/I for a given temperature
occurs at an L-independent magnetic field and is proportional to 1/L. The
results are interpreted in terms of the dissipative vortex motion along the
channel driven by a remote current, and can be understood in terms of a simple
model.Comment: 4 pages, 3 figure
Doppler Shift in Andreev Reflection from a Moving Superconducting Condensate in Nb/InAs Josephson Junctions
We study narrow ballistic Josephson weak links in a InAs quantum wells
contacted by Nb electrodes and find a dramatic magnetic-field suppression of
the Andreev reflection amplitude, which occurs even for in-plane field
orientation with essentially no magnetic flux through the junction. Our
observations demonstrate the presence of a Doppler shift in the energy of the
Andreev levels, which results from diamagnetic screening currents in the hybrid
Nb/InAs-banks. The data for conductance, excess and critical currents can be
consistently explained in terms of the sample geometry and the McMillan energy,
characterizing the transparency of the Nb/InAs-interface.Comment: 4 pages, 5 figures, title modifie
Atlas Toolkit: Fast registration of 3D morphological datasets in the absence of landmarks
Image registration is a gateway technology for Developmental Systems Biology, enabling computational analysis of related datasets within a shared coordinate system. Many registration tools rely on landmarks to ensure that datasets are correctly aligned; yet suitable landmarks are not present in many datasets. Atlas Toolkit is a Fiji/ImageJ plugin collection offering elastic group-wise registration of 3D morphological datasets, guided by segmentation of the interesting morphology. We demonstrate the method by combinatorial mapping of cell signalling events in the developing eyes of chick embryos, and use the integrated datasets to predictively enumerate Gene Regulatory Network states
Excitonic effects in solids described by time-dependent density functional theory
Starting from the many-body Bethe-Salpeter equation we derive an
exchange-correlation kernel that reproduces excitonic effects in bulk
materials within time-dependent density functional theory. The resulting
accounts for both self-energy corrections and the electron-hole
interaction. It is {\em static}, {\em non-local} and has a long-range Coulomb
tail. Taking the example of bulk silicon, we show that the
divergency is crucial and can, in the case of continuum excitons, even be
sufficient for reproducing the excitonic effects and yielding excellent
agreement between the calculated and the experimental absorption spectrum.Comment: 6 pages, 1 figur
Time-dependent screening of a positive charge distribution in metals: Excitons on an ultra-short time scale
Experiments determining the lifetime of excited electrons in crystalline
copper reveal states which cannot be interpreted as Bloch states [S. Ogawa {\it
et al.}, Phys. Rev. B {\bf 55}, 10869 (1997)]. In this article we propose a
model which explains these states as transient excitonic states in metals. The
physical background of transient excitons is the finite time a system needs to
react to an external perturbation, in other words, the time which is needed to
build up a polarization cloud. This process can be probed with modern
ultra-short laser pulses. We calculate the time-dependent density-response
function within the jellium model and for real Cu. From this knowledge it is
possible within linear response theory to calculate the time needed to screen a
positive charge distribution and -- on top of this -- to determine excitonic
binding energies. Our results lead to the interpretation of the experimentally
detected states as transient excitonic states.Comment: 24 pages, 9 figures, to appear in Phys. Rev. B, Nov. 15, 2000, issue
2
Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach
We present a method for computing optical absorption spectra by means of a
Bethe-Salpeter equation approach, which is based on a conserving linear
response calculation for electron-hole coherences in the presence of an
external electromagnetic field. This procedure allows, in principle, for the
determination of the electron-hole correlation function self-consistently with
the corresponding single-particle Green function. We analyze the general
approach for a "one-shot" calculation of the photoabsorption cross section of
finite systems, and discuss the importance of scattering and dephasing
contributions in this approach. We apply the method to the closed-shell
clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure
Incompressible image registration using divergence-conforming B-splines
Anatomically plausible image registration often requires volumetric
preservation. Previous approaches to incompressible image registration have
exploited relaxed constraints, ad hoc optimisation methods or practically
intractable computational schemes. Divergence-free velocity fields have been
used to achieve incompressibility in the continuous domain, although, after
discretisation, no guarantees have been provided. In this paper, we introduce
stationary velocity fields (SVFs) parameterised by divergence-conforming
B-splines in the context of image registration. We demonstrate that sparse
linear constraints on the parameters of such divergence-conforming B-Splines
SVFs lead to being exactly divergence-free at any point of the continuous
spatial domain. In contrast to previous approaches, our framework can easily
take advantage of modern solvers for constrained optimisation, symmetric
registration approaches, arbitrary image similarity and additional
regularisation terms. We study the numerical incompressibility error for the
transformation in the case of an Euler integration, which gives theoretical
insights on the improved accuracy error over previous methods. We evaluate the
proposed framework using synthetically deformed multimodal brain images, and
the STACOM11 myocardial tracking challenge. Accuracy measurements demonstrate
that our method compares favourably with state-of-the-art methods whilst
achieving volume preservation.Comment: Accepted at MICCAI 201
Diagrammatic Quantum Monte Carlo for Two-Body Problem: Exciton
We present a novel method for precise numerical solution of the irreducible
two-body problem and apply it to excitons in solids. The approach is based on
the Monte Carlo simulation of the two-body Green function specified by
Feynman's diagrammatic expansion. Our method does not rely on the specific form
of the electron and hole dispersion laws and is valid for any attractive
electron-hole potential. We establish limits of validity of the Wannier (large
radius) and Frenkel (small radius) approximations, present accurate data for
the intermediate radius excitons, and give evidence for the charge transfer
nature of the monopolar exciton in mixed valence materials.Comment: 4 pages, 5 figure
Space-time evolution of electron cascades in diamond
Here we describe model calculations to follow the spatio-temporal evolution
of secondary electron cascades in diamond. The band structure of the insulator
has been explicitly incorporated into the calculations as it affects
ionizations from the valence band. A Monte-Carlo model was constructed to
describe the path of electrons following the impact of a single electron of
energy E 250 eV. The results show the evolution of the secondary electron
cascades in terms of the number of electrons liberated, the spatial
distribution of these electrons, and the energy distribution among the
electrons as a function of time. The predicted ionization rates (5-13 electrons
in 100 fs) lie within the limits given by experiments and phenomenological
models. Calculation of the local electron density and the corresponding Debye
length shows that the latter is systematically larger than the radius of the
electron cloud. This means that the electron gas generated does not represent a
plasma in a single impact cascade triggered by an electron of E 250 eV energy.
This is important as it justifies the independent-electron approximation used
in the model. At 1 fs, the (average) spatial distribution of secondary
electrons is anisotropic with the electron cloud elongated in the direction of
the primary impact. The maximal radius of the cascade is about 50 A at this
time. As the system cools, energy is distributed more equally, and the spatial
distribution of the electron cloud becomes isotropic. At 90 fs maximal radius
is about 150 A. The Monte-Carlo model described here could be adopted for the
investigation of radiation damage in other insulators and has implications for
planned experiments with intense femtosecond X-ray sources.Comment: 26 pages, latex, 13 figure
Dispersion of the dielectric function of a charge-transfer insulator
We study the problem of dielectric response in the strong coupling regime of
a charge transfer insulator. The frequency and wave number dependence of the
dielectric function and its inverse is the main object of consideration. We show that the
problem, in general, cannot be reduced to a calculation within the Hubbard
model, which takes into account only a restricted number of electronic states
near the Fermi energy. The contribution of the rest of the system to the
longitudinal response (i.e. to ) is essential
for the whole frequency range. With the use of the spectral representation of
the two-particle Green's function we show that the problem may be divided into
two parts: into the contributions of the weakly correlated and the Hubbard
subsystems. For the latter we propose an approach that starts from the
correlated paramagnetic ground state with strong antiferromagnetic
fluctuations. We obtain a set of coupled equations of motion for the
two-particle Green's function that may be solved by means of the projection
technique. The solution is expressed by a two particle basis that includes the
excitonic states with electron and hole separated at various distances. We
apply our method to the multiband Hubbard (Emery) model that describes layered
cuprates. We show that strongly dispersive branches exist in the excitonic
spectrum of the 'minimal' Emery model () and consider the
dependence of the spectrum on finite oxygen hopping and on-site
repulsion . The relationship of our calculations to electron energy loss
spectroscopy is discussed.Comment: 22 pages, 5 figure
- …