7,272 research outputs found

    The Photonic Lantern

    Get PDF
    Photonic lanterns are made by adiabatically merging several single-mode cores into one multimode core. They provide low-loss interfaces between single-mode and multimode systems where the precise optical mapping between cores and individual modes is unimportant.Comment: 45 pages; article unchanged, accepted for publication in Advances in Optics and Photonic

    Formation and evolution of clumpy tidal tails around globular clusters

    Full text link
    We present some results of numerical simulations of a globular cluster orbiting in the central region of a triaxial galaxy on a set of 'loop' orbits. Tails start forming after about a quarter of the globular cluster orbital period and develop, in most cases, along the cluster orbit, showing clumpy substructures as observed, for example, in Palomar 5. If completely detectable, clumps can contain about 7,000 solar masses each, i.e. about 10% of the cluster mass at that epoch. The morphology of tails and clumps and the kinematical properties of stars in the tails are studied and compared with available observational data. Our finding is that the stellar velocity dispersion tends to level off at large radii, in agreement to that found for M15 and Omega Centauri.Comment: LaTeX 2e, uses AASTeX v5.x, 40 pages with 18 figures. Submitted to The Astronomical Journa

    Theory of Pump Depletion and Spike Formation in Stimulated Raman Scattering

    Full text link
    By using the inverse spectral transform, the SRS equations are solved and the explicit output data is given for arbitrary laser pump and Stokes seed profiles injected on a vacuum of optical phonons. For long duration laser pulses, this solution is modified such as to take into account the damping rate of the optical phonon wave. This model is used to interprete the experiments of Druhl, Wenzel and Carlsten (Phys. Rev. Lett., (1983) vol. 51, p. 1171), in particular the creation of a spike of (anomalous) pump radiation. The related nonlinear Fourier spectrum does not contain discrete eigenvalue, hence this Raman spike is not a soliton.Comment: LaTex file, includes two figures in LaTex format, 9 page

    Evidence for tidal interaction and merger as the origin of galaxy morphology evolution in compact groups

    Get PDF
    We present the results of a morphological study based on NIR images of 25 galaxies, with different levels of nuclear activity, in 8 Compact Groups of Galaxies (CGs). We perform independently two different analysis: a isophotal study and a study of morphological asymmetries. The results yielded by the two analysis are highly consistent. For the first time, it is possible to show that deviations from pure ellipses are produced by inhomogeneous stellar mass distributions related to galaxy interactions and mergers. We find evidence of mass asymmetries in 74% of the galaxies in our sample. In 59% of these cases, the asymmetries come in pairs, and are consistent with tidal effects produced by the proximity of companion galaxies. The symmetric galaxies are generally small in size or mass, inactive, and have an early-type morphology. In 20% of the galaxies we find evidence for cannibalism. In 36% of the early-type galaxies the color gradient is positive (blue nucleus) or flat. Summing up these results, as much as 52% of the galaxies in our sample could show evidence of an on going or past mergers. Our observations suggest that galaxies in CGs merge more frequently under ``dry'' conditions. The high frequency of interacting and merging galaxies observed in our study is consistent with the bias of our sample towards CGs of type B, which represents the most active phase in the evolution of the groups. In these groups we also find a strong correlation between asymmetries and nuclear activity in early-type galaxies. This correlation allows us to identify tidal interactions and mergers as the cause of galaxy morphology transformation in CGs.[abridge]Comment: 64 pages, 35 figures. Accepted for publication in Ap

    Mass and Charge in Brane-World and Non-Compact Kaluza-Klein Theories in 5 Dim

    Get PDF
    In classical Kaluza-Klein theory, with compactified extra dimensions and without scalar field, the rest mass as well as the electric charge of test particles are constants of motion. We show that in the case of a large extra dimension this is no longer so. We propose the Hamilton-Jacobi formalism, instead of the geodesic equation, for the study of test particles moving in a five-dimensional background metric. This formalism has a number of advantages: (i) it provides a clear and invariant definition of rest mass, without the ambiguities associated with the choice of the parameters used along the motion in 5D and 4D, (ii) the electromagnetic field can be easily incorporated in the discussion, and (iii) we avoid the difficulties associated with the "splitting" of the geodesic equation. For particles moving in a general 5D metric, we show how the effective rest mass, as measured by an observer in 4D, varies as a consequence of the large extra dimension. Also, the fifth component of the momentum changes along the motion. This component can be identified with the electric charge of test particles. With this interpretation, both the rest mass and the charge vary along the trajectory. The constant of motion is now a combination of these quantities. We study the cosmological variations of charge and rest mass in a five-dimensional bulk metric which is used to embed the standard k = 0 FRW universes. The time variations in the fine structure "constant" and the Thomson cross section are also discussed.Comment: V2: References added, discussion extended. V3 is identical to V2, references updated. To appear in General Relativity and Gravitatio

    Effective spacetime from multi-dimensional gravity

    Full text link
    We study the effective spacetimes in lower dimensions that can be extracted from a multidimensional generalization of the Schwarzschild-Tangherlini spacetimes derived by Fadeev, Ivashchuk and Melnikov ({\it Phys. Lett,} {\bf A 161} (1991) 98). The higher-dimensional spacetime has D=(4+n+m)D = (4 + n + m) dimensions, where nn and mm are the number of "internal" and "external" extra dimensions, respectively. We analyze the effective (4+n)(4 + n) spacetime obtained after dimensional reduction of the mm external dimensions. We find that when the mm extra dimensions are compact (i) the physics in lower dimensions is independent of mm and the character of the singularities in higher dimensions, and (ii) the total gravitational mass MM of the effective matter distribution is less than the Schwarzshild mass. In contrast, when the mm extra dimensions are large this is not so; the physics in (4+n)(4 + n) does explicitly depend on mm, as well as on the nature of the singularities in high dimensions, and the mass of the effective matter distribution (with the exception of wormhole-like distributions) is bigger than the Schwarzshild mass. These results may be relevant to observations for an experimental/observational test of the theory.Comment: A typo in Eq. (24) is fixe

    Effect of ethylene on postharvest strawberry fruit tissue biochemistry

    Get PDF
    The effect of continuous ethylene supplementation (50 µL L-1) on cold-stored strawberry fruit physiology and biochemistry, including phytohormone (abscisic acid) metabolism was investigated. In comparison with control fruit which exhibited high sucrose and malic acid contents during storage, ethylene-treated fruits showed increased respiration, sucrose hydrolysis and concomitant reducing sugars accumulation. Ethylene supplementation did not have any effect on phenolic profile. ABA biosynthesis, in both flesh and achenes, was promoted by ethylene. The results herein suggest that controlling ethylene after harvest could suppress senescence and extend shelf-life

    Indium segregation and enrichment in coherent InxGa1-xAs/GaAs quantum dots

    Get PDF
    Significant differences in the image features of InxGa1-xAs quantum dots (QDs) grown on (001) and vicinal (001) GaAs were seen in [001] on-zone bright-held transmission electron microscope images. Simulated images were obtained by modeling the strain field distribution of the QDs with finite element analysis and then using this model in dynamical electron diffraction contrast simulations. Comparison of the experimental images and the simulated images shows that (i) In segregation exists in the QDs and (ii) the average In content of the QDs is higher than the average In content of the film

    Sufficient Conditions for Fast Switching Synchronization in Time Varying Network Topologies

    Full text link
    In previous work, empirical evidence indicated that a time-varying network could propagate sufficient information to allow synchronization of the sometimes coupled oscillators, despite an instantaneously disconnected topology. We prove here that if the network of oscillators synchronizes for the static time-average of the topology, then the network will synchronize with the time-varying topology if the time-average is achieved sufficiently fast. Fast switching, fast on the time-scale of the coupled oscillators, overcomes the descychnronizing decoherence suggested by disconnected instantaneous networks. This result agrees in spirit with that of where empirical evidence suggested that a moving averaged graph Laplacian could be used in the master-stability function analysis. A new fast switching stability criterion here-in gives sufficiency of a fast-switching network leading to synchronization. Although this sufficient condition appears to be very conservative, it provides new insights about the requirements for synchronization when the network topology is time-varying. In particular, it can be shown that networks of oscillators can synchronize even if at every point in time the frozen-time network topology is insufficiently connected to achieve synchronization.Comment: Submitted to SIAD

    Dispersion Effects in Nucleon Polarisabilities

    Get PDF
    We present a formalism to extract the dynamical nucleon polarisabilities defined via a multipole expansion of the structure amplitudes in nucleon Compton scattering. In contradistinction to the static polarisabilities, dynamical polarisabilities gauge the response of the internal degrees of freedom of a composed object to an external, real photon field of arbitrary energy. Being energy dependent, they therefore contain additional information about dispersive effects induced by internal relaxation mechanisms, baryonic resonances and meson production thresholds of the nucleon. We give explicit formulae to extract the dynamical electric and magnetic dipole as well as quadrupole polarisabilities from low energy nucleon Compton scattering up to the one pion production threshold and discuss the connection to the definition of static nucleon polarisabilities. As a concrete example, we examine the results of leading order Heavy Baryon Chiral Perturbation Theory for the four leading spin independent iso-scalar polarisabilities of the nucleon. Finally, we consider the possible r{\^o}le of energy dependent effects in low energy extractions of the iso-scalar dipole polarisabilities from Compton scattering on the deuteron.Comment: 17 pages LaTeX2e with 2 figures, using includegraphicx (5 .eps files). Minor corrections, references updated. Contents identical to version to appear in Phys. Rev. C 65, spelling differen
    corecore